Holmberg MJ, Ross CE, Fitzmaurice GM, et al. Annual incidence of adult and pediatric in-hospital cardiac arrest in the United States. Circ Cardiovasc Qual Outcomes. 2019;12(7): e005580.
Article PubMed PubMed Central Google Scholar
Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation. 2014;129(3):e28–292. https://doi.org/10.1161/01.cir.0000441139.02102.80.
Wu L, Narasimhan B, Bhatia K, et al. Temporal trends in characteristics and outcomes associated with in-hospital cardiac arrest: a 20-year analysis (1999–2018). J Am Heart Assoc. 2021;10(23): e021572. https://doi.org/10.1161/JAHA.121.021572.
Article PubMed PubMed Central Google Scholar
Neumar RW, Nolan JP, Adrie C, et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A consensus statement from the International Liaison Committee on Resuscitation (American Heart Association, Australian and New Zealand Council on Resuscitation, European Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Asia, and the Resuscitation Council of Southern Africa); the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; and the Stroke Council. Circulation. 2008;118(23):2452–83. https://doi.org/10.1161/CIRCULATIONAHA.108.190652.
Sekhon MS, Ainslie PN, Griesdale DE. Clinical pathophysiology of hypoxic ischemic brain injury after cardiac arrest: a “two-hit” model. Crit Care. 2017;21(1):90. https://doi.org/10.1186/s13054-017-1670-9.
Article PubMed PubMed Central Google Scholar
Nolan JP, Neumar RW, Adrie C, et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A Scientific Statement from the International Liaison Committee on Resuscitation; the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; the Council on Stroke. Resuscitation. 2008;79(3):350–79. https://doi.org/10.1016/j.resuscitation.2008.09.017.
Kim KS, Jeon MT, Kim ES, Lee CH, Kim DG. Activation of NMDA receptors in brain endothelial cells increases transcellular permeability. Fluids Barriers CNS. 2022;19(1):70. https://doi.org/10.1186/s12987-022-00364-6.
Article CAS PubMed PubMed Central Google Scholar
Wagner SR, Lanier WL. Metabolism of glucose, glycogen, and high-energy phosphates during complete cerebral ischemia. A comparison of normoglycemic, chronically hyperglycemic diabetic, and acutely hyperglycemic nondiabetic rats. Anesthesiology. 1994;81(6):1516–26. https://doi.org/10.1097/00000542-199412000-00028.
Article CAS PubMed Google Scholar
Sandroni C, Cronberg T, Sekhon M. Brain injury after cardiac arrest: pathophysiology, treatment, and prognosis. Intensive Care Med. 2021;47(12):1393–414. https://doi.org/10.1007/s00134-021-06548-2.
Article CAS PubMed PubMed Central Google Scholar
Yuan X, Chen B, Duan Z, et al. Depression and anxiety in patients with active ulcerative colitis: crosstalk of gut microbiota, metabolomics and proteomics. Gut Microbes. 2021;13(1):1987779. https://doi.org/10.1080/19490976.2021.1987779.
Article CAS PubMed PubMed Central Google Scholar
Wu W, Sun Y, Luo N, et al. Integrated 16S rRNA gene sequencing and LC–MS analysis revealed the interplay between gut microbiota and plasma metabolites in rats with ischemic stroke. J Mol Neurosci. 2021;71(10):2095–106. https://doi.org/10.1007/s12031-021-01828-4.
Article CAS PubMed Google Scholar
Gareau MG. The microbiota-gut-brain axis in sepsis-associated encephalopathy. mSystems. 2022;7(4): e0053322. https://doi.org/10.1128/msystems.00533-22.
Sampson TR, Mazmanian SK. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe. 2015;17(5):565–76. https://doi.org/10.1016/j.chom.2015.04.011.
Article CAS PubMed PubMed Central Google Scholar
Zeng X, Li J, Shan W, Lai Z, Zuo Z. Gut microbiota of old mice worsens neurological outcome after brain ischemia via increased valeric acid and IL-17 in the blood. Microbiome. 2023;11(1):204. https://doi.org/10.1186/s40168-023-01648-1.
Article CAS PubMed PubMed Central Google Scholar
Houlden A, Goldrick M, Brough D, et al. Brain injury induces specific changes in the caecal microbiota of mice via altered autonomic activity and mucoprotein production. Brain Behav Immun. 2016;57:10–20. https://doi.org/10.1016/j.bbi.2016.04.003.
Article CAS PubMed PubMed Central Google Scholar
Choi J, Shoaib M, Yin T, et al. Tissue-specific metabolic profiles after prolonged cardiac arrest reveal brain metabolome dysfunction predominantly after resuscitation. J Am Heart Assoc. 2019;8(17): e012809. https://doi.org/10.1161/JAHA.119.012809.
Article PubMed PubMed Central Google Scholar
Shoaib M, Choudhary RC, Choi J, et al. Plasma metabolomics supports the use of long-duration cardiac arrest rodent model to study human disease by demonstrating similar metabolic alterations. Sci Rep. 2020;10(1):19707. https://doi.org/10.1038/s41598-020-76401-x.
Article CAS PubMed PubMed Central Google Scholar
Paulin Beske R, Henriksen HH, Obling L, et al. Targeted plasma metabolomics in resuscitated comatose out-of-hospital cardiac arrest patients. Resuscitation. 2022;179:163–71. https://doi.org/10.1016/j.resuscitation.2022.06.010.
Agus A, Planchais J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe. 2018;23(6):716–24. https://doi.org/10.1016/j.chom.2018.05.003.
Article CAS PubMed Google Scholar
Lucchetti J, Fumagalli F, Olivari D, et al. Brain kynurenine pathway and functional outcome of rats resuscitated from cardiac arrest. J Am Heart Assoc. 2021;10(23): e021071. https://doi.org/10.1161/JAHA.121.021071.
Article CAS PubMed PubMed Central Google Scholar
Hochstrasser SR, Metzger K, Vincent AM, et al. Trimethylamine-N-oxide (TMAO) predicts short- and long-term mortality and poor neurological outcome in out-of-hospital cardiac arrest patients. Clin Chem Lab Med. 2020;59(2):393–402. https://doi.org/10.1515/cclm-2020-0159.
Article CAS PubMed Google Scholar
Tissier R, Hocini H, Tchitchek N, et al. Early blood transcriptomic signature predicts patients’ outcome after out-of-hospital cardiac arrest. Resuscitation. 2019;138:222–32. https://doi.org/10.1016/j.resuscitation.2019.03.006.
Eun JW, Yang HD, Kim SH, et al. Identification of novel biomarkers for prediction of neurological prognosis following cardiac arrest. Oncotarget. 2017;8(10):16144–57. https://doi.org/10.18632/oncotarget.14877.
Article PubMed PubMed Central Google Scholar
Wang C, Qi C, Liu M, et al. Protective effects of agrimonolide on hypoxia-induced H9c2 cell injury by maintaining mitochondrial homeostasis. J Cell Biochem. 2022;123(2):306–21. https://doi.org/10.1002/jcb.30169.
Article CAS PubMed Google Scholar
Wu H, Xu S, Diao M, Wang J, Zhang G, Xu J. Alda-1 treatment alleviates lung injury after cardiac arrest and resuscitation in swine. Shock. 2022;58(5):464–9. https://doi.org/10.1097/SHK.0000000000002003.
Article CAS PubMed Google Scholar
Diao M, Xu J, Wang J, et al. Alda-1, an activator of ALDH2, improves postresuscitation cardiac and neurological outcomes by inhibiting pyroptosis in swine. Neurochem Res. 2022;47(4):1097–109. https://doi.org/10.1007/s11064-021-03511-x.
留言 (0)