Mechanistic study on vasodilatory and antihypertensive effects of hesperetin: ex vivo and in vivo approaches

Bhargava M, Ikram MK, Wong TY. How does hypertension affect your eyes? J Hum Hypertens. 2012;26:71–83.

Article  CAS  PubMed  Google Scholar 

Rampal L, Rampal S, Azhar MZ, Rahman AR. Prevalence, awareness, treatment and control of hypertension in Malaysia: a national study of 16,440 subjects. Public Health. 2008;122:11–8.

Article  CAS  PubMed  Google Scholar 

Collaboration NCDRF. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet. 2021;398:957–80.

Article  Google Scholar 

Garg A, Garg S, Zaneveld LJ, Singla AK. Chemistry and pharmacology of the Citrus bioflavonoid hesperidin. Phytother Res. 2001;15:655–69.

Article  CAS  PubMed  Google Scholar 

Li YM, Li XM, Li GM, Du WC, Zhang J, Li WX, et al. In vivo pharmacokinetics of hesperidin are affected by treatment with glucosidase-like BglA protein isolated from yeasts. J Agric Food Chem. 2008;56:5550–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamamoto M, Suzuki A, Hase T. Short-term effects of glucosyl hesperidin and hesperetin on blood pressure and vascular endothelial function in spontaneously hypertensive rats. J Nutr Sci Vitaminol. 2008;54:95–8.

Article  CAS  PubMed  Google Scholar 

Akiyama S, Katsumata S, Suzuki K, Nakaya Y, Ishimi Y, Uehara M. Hypoglycemic and hypolipidemic effects of hesperidin and cyclodextrin-clathrated hesperetin in Goto-Kakizaki rats with type 2 diabetes. Biosci Biotechnol Biochem. 2009;73:2779–82.

Article  CAS  PubMed  Google Scholar 

Alu’datt MH, Rababah T, Alhamad MN, Al-Mahasneh MA, Ereifej K, Al-Karaki G, et al. Profiles of free and bound phenolics extracted from Citrus fruits and their roles in biological systems: content, and antioxidant, anti-diabetic and anti-hypertensive properties. Food Funct. 2017;8:3187–97.

Article  PubMed  Google Scholar 

Parhiz H, Roohbakhsh A, Soltani F, Rezaee R, Iranshahi M. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytother Res. 2015;29:323–31.

Article  CAS  PubMed  Google Scholar 

Wang HW, Shi L, Xu YP, Qin XY, Wang QZ. Hesperetin alleviates renal interstitial fibrosis by inhibiting tubular epithelial-mesenchymal transition in vivo and in vitro. Exp Ther Med. 2017;14:3713–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rizza S, Muniyappa R, Iantorno M, Kim JA, Chen H, Pullikotil P, et al. Citrus polyphenol hesperidin stimulates production of nitric oxide in endothelial cells while improving endothelial function and reducing inflammatory markers in patients with metabolic syndrome. J Clin Endocrinol Metab. 2011;96:E782–792.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takumi H, Nakamura H, Simizu T, Harada R, Kometani T, Nadamoto T, et al. Bioavailability of orally administered water-dispersible hesperetin and its effect on peripheral vasodilatation in human subjects: implication of endothelial functions of plasma conjugated metabolites. Food Funct. 2012;3:389–98.

Article  CAS  PubMed  Google Scholar 

Orallo F, Alvarez E, Basaran H, Lugnier C. Comparative study of the vasorelaxant activity, superoxide-scavenging ability and cyclic nucleotide phosphodiesterase-inhibitory effects of hesperetin and hesperidin. Naunyn Schmiedebergs Arch Pharm. 2004;370:452–63.

Article  CAS  Google Scholar 

Tan CS, Loh YC, Ch’ng YS, Ng CH, Yeap ZQ, Ahmad M, et al. Vasorelaxant and chemical fingerprint studies of Citrus reticulatae pericarpium extracts. J Ethnopharmacol. 2019;232:135–44.

Article  CAS  PubMed  Google Scholar 

Tan CS, Yam MF. Mechanism of vasorelaxation induced by 3′-hydroxy-5,6,7,4′-tetramethoxyflavone in the rats aortic ring assay. Naunyn Schmiedebergs Arch Pharm. 2018;391:561–9.

Article  CAS  Google Scholar 

Tew WY, Tan CS, Asmawi MZ, Yam MF. Underlying mechanism of vasorelaxant effect exerted by 3,5,7,2′,4′-pentahydroxyflavone in rats aortic ring. Eur J Pharm. 2020;880:173123.

Article  CAS  Google Scholar 

Yam MF, Tan CS, Shibao R. Vasorelaxant effect of sinensetin via the NO/sGC/cGMP pathway and potassium and calcium channels. Hypertens Res. 2018;41:787–97.

Article  CAS  PubMed  Google Scholar 

Chen YJ, Kong L, Tang ZZ, Zhang YM, Liu Y, Wang TY, et al. Hesperetin ameliorates diabetic nephropathy in rats by activating Nrf2/ARE/glyoxalase 1 pathway. Biomed Pharmacother. 2019;111:1166–75.

Article  CAS  PubMed  Google Scholar 

Jiao Q, Xu L, Jiang L, Jiang Y, Zhang J, Liu B. Metabolism study of hesperetin and hesperidin in rats by UHPLC-LTQ-Orbitrap MS (n). Xenobiotica. 2020;50:1311–22.

Article  CAS  PubMed  Google Scholar 

Muhammad T, Ikram M, Ullah R, Rehman SU, Kim MO. Hesperetin, a citrus flavonoid, attenuates LPS-induced neuroinflammation, apoptosis and memory impairments by modulating TLR4/NF-kappaB signaling. Nutrients. 2019;11:648.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang HL, Chen SC, Senthil Kumar KJ, Yu KN, Lee Chao PD, Tsai SY, et al. Antioxidant and anti-inflammatory potential of hesperetin metabolites obtained from hesperetin-administered rat serum: an ex vivo approach. J Agric Food Chem. 2012;60:522–32.

Article  CAS  PubMed  Google Scholar 

Ch’ng YS, Loh YC, Tan CS, Ahmad M, Asmawi MZ, Wan Omar WM, et al. Vasodilation and antihypertensive activities of Swietenia macrophylla (Mahogany) seed extract. J Med Food. 2018;21:289–301.

Article  PubMed  Google Scholar 

Yildiz O, Seyrek M, Gul H. Pharmacology of arterial grafts for coronary artery bypass surgery. In: Artery bypass. 2013. https://doi.org/10.5772/54723.

Nesterova AP, Klimov EA, Zharkova M, Sozin S, Sobolev V, Ivanikova NV, et al. Diseases of the circulatory system. In: Disease pathways. 2020. p. 327–90. https://doi.org/10.1016/b978-0-12-817086-1.00008-7.

Goodman LS, Brunton LL, Chabne B, C KB. Goodman & Gilman’s pharmacological basis of therapeutics. New York: McGraw-Hill; 2011.

Kang KT. Endothelium-derived relaxing factors of small resistance arteries in hypertension. Toxicol Res. 2014;30:141–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu L, Xu DM, Cheng YY. Distinct effects of naringenin and hesperetin on nitric oxide production from endothelial cells. J Agric Food Chem. 2008;56:824–9.

Article  CAS  PubMed  Google Scholar 

Sobey CG. Potassium channel function in vascular disease. Arterioscler Thromb Vasc Biol. 2001;21:28–38.

Article  CAS  PubMed  Google Scholar 

Berumen LC, Rodriguez A, Miledi R, Garcia-Alcocer G. Serotonin receptors in hippocampus. ScientificWorldJournal. 2012;2012:823493.

Article  PubMed  PubMed Central  Google Scholar 

Silva AS, Zanesco A. Exercício físico, receptores β-adrenérgicos e resposta vascular. J Vasc Brasileiro. 2010;9:47–56.

Article  Google Scholar 

Baltoumas FA, Theodoropoulou MC, Hamodrakas SJ. Interactions of the alpha-subunits of heterotrimeric G-proteins with GPCRs, effectors and RGS proteins: a critical review and analysis of interacting surfaces, conformational shifts, structural diversity and electrostatic potentials. J Struct Biol. 2013;182:209–18.

Article  CAS  PubMed  Google Scholar 

Ishii M, Kurachi Y. Muscarinic acetylcholine receptors. Curr Pharm Des. 2006;12:3573–81.

Article  CAS  PubMed  Google Scholar 

Jackson WF. Potassium channels in regulation of vascular smooth muscle contraction and growth. Adv Pharm. 2017;78:89–144.

Article  CAS  Google Scholar 

Liu Y, Zhang L, Dong L, Song Q, Guo P, Wang Y, et al. Hesperetin improves diabetic coronary arterial vasomotor responsiveness by upregulating myocyte voltage-gated K(+) channels. Exp Ther Med. 2020;20:486–94.

留言 (0)

沒有登入
gif