Materials challenges on the path to gigatonne CO2 electrolysis

International Energy Agency. CO2 emissions in 2022 (IEA, 2023).

Fisher, B. et al. in Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Ch. 3 (eds Metz, B., Davidson, O. R., Bosch, P. R., Dave, R. & Meyer, L. A.) 169–250 (Cambridge Univ. Press, 2007).

CO2.Earth. 2100 projections. CO2.Earth https://www.co2.earth/2100-projections (2024).

United Nations Framework Convention on Climate Change. The Paris Agreement. UNFCCC https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (2022).

United Nations Framework Convention on Climate Change. The Glasgow Climate Pact: key outcomes from COP26. UNFCCC https://unfccc.int/process-and-meetings/the-paris-agreement/the-glasgow-climate-pact-key-outcomes-from-cop26 (2021).

Intergovernmental Panel on Climate Change. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2023).

Pickering, B., Lombardi, F. & Pfenninger, S. Diversity of options to eliminate fossil fuels and reach carbon neutrality across the entire European energy system. Joule 6, 1253–1276 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nesbitt, E. R. Using waste carbon feedstocks to produce chemicals. Ind. Biotechnol. 16, 147–163 (2020).

Article  Google Scholar 

Hepburn, C. et al. The technological and economic prospects for CO2 utilization and removal. Nature 575, 87–97 (2019).

Article  CAS  PubMed  Google Scholar 

Centi, G. & Perathoner, S. in Handbook of Climate Change Mitigation and Adaptation (eds Lackner, M., Sajjadi, B. & Chen, W.-Y.) 1803–1852 (2022).

Barecka, M. H., Ager, J. W. & Lapkin, A. A. Carbon neutral manufacturing via on-site CO2 recycling. iScience 24, 102514 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Markewitz, P. et al. Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy Environ. Sci. 5, 7281–7305 (2012).

Article  CAS  Google Scholar 

Drechsler, C. & Agar, D. W. Intensified integrated direct air capture — power-to-gas process based on H2O and CO2 from ambient air. Appl. Energy 273, 115076 (2020).

Article  CAS  Google Scholar 

Barzagli, F., Giorgi, C., Mani, F. & Peruzzini, M. Screening study of different amine-based solutions as sorbents for direct CO2 capture from air. ACS Sustain. Chem. Eng. 8, 14013–14021 (2020).

Article  CAS  Google Scholar 

Veselovskaya, J. V. et al. Direct CO2 capture from ambient air using K2CO3/Al2O3 composite sorbent. Int. J. Greenh. Gas Control 17, 332–340 (2013).

Article  CAS  Google Scholar 

European Parliament. Circular economy: definition, importance and benefits. European Parliament https://www.europarl.europa.eu/news/en/headlines/economy/20151201STO05603/circular-economy-definition-importance-and-benefits (2023).

Kaiser, S., Gold, S. & Bringezu, S. Environmental and economic assessment of CO2-based value chains for a circular carbon use in consumer products. Resour. Conserv. Recycl. 184, 106422 (2022).

Article  CAS  Google Scholar 

Khoo, H. H., Halim, I. & Handoko, A. D. LCA of electrochemical reduction of CO2 to ethylene. J. CO2 Util. 41, 101229 (2020).

Article  CAS  Google Scholar 

Cheng, Y., Hou, P., Wang, X. & Kang, P. CO2 electrolysis system under industrially relevant conditions. Acc. Chem. Res. 55, 231–240 (2022).

Article  CAS  PubMed  Google Scholar 

Martindale, B. Electrifying start-up. Nat. Catal. 4, 924–925 (2021).

Article  Google Scholar 

Masel, R. I. et al. An industrial perspective on catalysts for low-temperature CO2 electrolysis. Nat. Nanotechnol. 16, 118–128 (2021).

Article  CAS  PubMed  Google Scholar 

CERT Systems. Essential chemicals without fossil fuels. CERT https://co2cert.com/ (2024).

eChemicles. Electrolysis for a better tomorrow! eChemicles https://echemicles.com/ (2024).

Dioxycle. Technology. Dioxycle https://dioxycle.com/#technology (2024).

Zhang, Z. et al. Membrane electrode assembly for electrocatalytic CO2 reduction: principle and application. Angew. Chem. Int. Ed. 62, e202302789 (2023).

Article  CAS  Google Scholar 

Nguyen, T. N. & Dinh, C. T. Gas diffusion electrode design for electrochemical carbon dioxide reduction. Chem. Soc. Rev. 49, 7488–7504 (2020).

Article  CAS  PubMed  Google Scholar 

Ozden, A. et al. Carbon-efficient carbon dioxide electrolysers. Nat. Sustain. 5, 563–573 (2022).

Article  Google Scholar 

Park, J. et al. Strategies for CO2 electroreduction in cation exchange membrane electrode assembly. Chem. Eng. J. 453, 139826 (2023).

Article  CAS  Google Scholar 

Ma, M., Kim, S., Chorkendorff, I. & Seger, B. Role of ion-selective membranes in the carbon balance for CO2 electroreduction via gas diffusion electrode reactor designs. Chem. Sci. 11, 8854–8861 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wren, J. C. et al. Design of an electrochemical cell making syngas (CO + H2) from CO2 and H2O reduction at room temperature. J. Electrochem. Soc. 155, B42 (2007).

Google Scholar 

Huang, J. E. et al. CO2 electrolysis to multicarbon products in strong acid. Science 372, 1074–1078 (2021).

Article  CAS  PubMed  Google Scholar 

Noh, S., Jeon, J. Y., Adhikari, S., Kim, Y. S. & Bae, C. Molecular engineering of hydroxide conducting polymers for anion exchange membranes in electrochemical energy conversion technology. Acc. Chem. Res. 52, 2745–2755 (2019).

Article  CAS  PubMed  Google Scholar 

Vermaas, D. A. & Smith, W. A. Synergistic electrochemical CO2 reduction and water oxidation with a bipolar membrane. ACS Energy Lett. 1, 1143–1148 (2016).

Article  CAS  Google Scholar 

Salvatore, D. A. et al. Electrolysis of gaseous CO2 to CO in a flow cell with a bipolar membrane. ACS Energy Lett. 3, 149–154 (2018).

Article  CAS  Google Scholar 

Stephens, I. E. L. et al. Roadmap on low temperature electrochemical CO2 reduction. J. Phys. Energy 4, 042003 (2022).

Article  CAS  Google Scholar 

Wakerley, D. et al. Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers. Nat. Energy 7, 130–143 (2022).

Article  CAS  Google Scholar 

Verma, S., Lu, X., Ma, S., Masel, R. I. & Kenis, P. J. A. The effect of electrolyte composition on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes. Phys. Chem. Chem. Phys. 18, 7075–7084 (2016).

Article  CAS  PubMed  Google Scholar 

Verma, S. et al. Insights into the low overpotential electroreduction of CO2 to CO on a supported gold catalyst in an alkaline flow electrolyzer. ACS Energy Lett. 3, 193–198 (2018).

Article  CAS  Google Scholar 

Larrazábal, G. O. et al. Analysis of mass flows and membrane cross-over in CO2 reduction at high current densities in an MEA-type electrolyzer. ACS Appl. Mater. Interfaces 11, 41281–41288 (2019).

Article  PubMed  Google Scholar 

Rabinowitz, J. A. & Kanan, M. W. The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem. Nat. Commun. 11, 1–3 (2020).

Article  Google Scholar 

Fan, M. et al. Cationic-group-functionalized electrocatalysts enable stable acidic CO2 electrolysis. Nat. Catal. 6, 763–772 (2023).

Article  CAS  Google Scholar 

Xie, Y. et al. High carbon utilization in CO2 reduction to multi-carbon products in acidic media. Nat. Catal. 5, 564–570 (2022).

Article  CAS  Google Scholar 

Li, H. et al. Tailoring acidic microenvironments for carbon-efficient CO2 electrolysis over a Ni–N–C catalyst in a membrane electrode assembly electrolyzer. Energy Environ. Sci. 16, 1502–1510 (2023).

Article  CAS  Google Scholar 

Li, L., Liu, Z., Yu, X. & Zhong, M. Achieving high single-pass carbon conversion efficiencies in durable CO2 electroreduction in strong acids via electrode structure engineering. Angew. Chem. Int. Ed. 62, e202300226 (2023).

Article  CAS 

留言 (0)

沒有登入
gif