Rotating magnetic field improved cognitive and memory impairments in a sporadic ad model of mice by regulating microglial polarization

Alzheimer’s disease facts and figures. Alzheimers Dement. 2023;19:1598-1695. https://doi.org/10.1002/alz.13016.

Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology. 1992;42:631–9. https://doi.org/10.1212/wnl.42.3.631.

Article  CAS  PubMed  Google Scholar 

Glenn JA, Ward SA, Stone CR, Booth PL, Thomas WE. Characterisation of ramified microglial cells: detailed morphology, morphological plasticity and proliferative capability. J Anat. 1992;180(Pt 1):109–18.

PubMed  PubMed Central  Google Scholar 

Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308:1314–8. https://doi.org/10.1126/science.1110647.

Article  CAS  PubMed  Google Scholar 

Lavin Y, et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell. 2014;159:1312–26. https://doi.org/10.1016/j.cell.2014.11.018.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee M, McGeer E, McGeer PL. Activated human microglia stimulate neuroblastoma cells to upregulate production of beta amyloid protein and tau: implications for Alzheimer’s disease pathogenesis. Neurobiol Aging. 2015;36:42–52. https://doi.org/10.1016/j.neurobiolaging.2014.07.024.

Article  CAS  PubMed  Google Scholar 

Michell-Robinson MA, et al. Roles of microglia in brain development, tissue maintenance and repair. Brain. 2015;138:1138–59. https://doi.org/10.1093/brain/awv066.

Article  PubMed  PubMed Central  Google Scholar 

Michelucci A, Heurtaux T, Grandbarbe L, Morga E, Heuschling P. Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: effects of oligomeric and fibrillar amyloid-beta. J Neuroimmunol. 2009;210:3–12. https://doi.org/10.1016/j.jneuroim.2009.02.003.

Article  CAS  PubMed  Google Scholar 

Smith JA, Das A, Ray SK, Banik NL. Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull. 2012;87:10–20. https://doi.org/10.1016/j.brainresbull.2011.10.004.

Article  CAS  PubMed  Google Scholar 

von Bernhardi R, Eugenín-von Bernhardi L, Eugenín J. Microglial cell dysregulation in brain aging and neurodegeneration. Front Aging Neurosci. 2015;7:124. https://doi.org/10.3389/fnagi.2015.00124.

Article  Google Scholar 

Tang Y, Le W. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol. 2016;53:1181–94. https://doi.org/10.1007/s12035-014-9070-5.

Article  CAS  PubMed  Google Scholar 

Stephenson J, Nutma E, van der Valk P, Amor S. Inflammation in CNS neurodegenerative diseases. Immunology. 2018;154:204–19. https://doi.org/10.1111/imm.12922.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schwartz M, Baruch K. The resolution of neuroinflammation in neurodegeneration: leukocyte recruitment via the choroid plexus. Embo j. 2014;33:7–22. https://doi.org/10.1002/embj.201386609.

Article  CAS  PubMed  Google Scholar 

Papa S, Caron I, Rossi F, Veglianese P. Modulators of microglia: a patent review. Expert Opin Ther Pat. 2016;26:427–37. https://doi.org/10.1517/13543776.2016.1135901.

Article  CAS  PubMed  Google Scholar 

Bellucci A, et al. Induction of inflammatory mediators and microglial activation in mice transgenic for mutant human P301S tau protein. Am J Pathol. 2004;165:1643–52. https://doi.org/10.1016/s0002-9440(10)63421-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sasaki A, et al. Microglial activation in brain lesions with tau deposits: comparison of human tauopathies and tau transgenic mice TgTauP301L. Brain Res. 2008;1214:159–68. https://doi.org/10.1016/j.brainres.2008.02.084.

Article  CAS  PubMed  Google Scholar 

Kametani F, Hasegawa M. Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer’s disease. Front Neurosci. 2018;12:25. https://doi.org/10.3389/fnins.2018.00025.

Article  PubMed  PubMed Central  Google Scholar 

Frank-Cannon TC, Alto LT, McAlpine FE, Tansey MG. Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener. 2009;4:47. https://doi.org/10.1186/1750-1326-4-47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cagnin A, et al. In-vivo measurement of activated microglia in dementia. Lancet. 2001;358:461–7. https://doi.org/10.1016/s0140-6736(01)05625-2.

Article  CAS  PubMed  Google Scholar 

Allahtavakoli M, Shabanzadeh AP, Sadr SS, Parviz M, Djahanguiri B. Rosiglitazone, a peroxisome proliferator-activated receptor-gamma ligand, reduces infarction volume and neurological deficits in an embolic model of stroke. Clin Exp Pharmacol Physiol. 2006;33:1052–8. https://doi.org/10.1111/j.1440-1681.2006.04486.x.

Article  CAS  PubMed  Google Scholar 

Thorsten, H. Wolfgang, K. Joachim, M. Ursula, Herbert S. Benzimidazole derivatives for treating microglia-activation associated diseases such as inflammatory, allergic, infectious or autoimmune diseases, EP200207561. 2003.

Scopes, David, Horwell. PYRROLO [3,2-E] [1,2,4] TRIAZOLO [1,5-A] Pyrimidnes derivatives as inhibitors of microglia activation, EP2488528A1. 2012.

Caron I, Papa S, Rossi F, Forloni G, Veglianese P. Nanovector-mediated drug delivery for spinal cord injury treatment. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014;6:506–15. https://doi.org/10.1002/wnan.1276.

Article  CAS  PubMed  Google Scholar 

Zhang XY, Xue Y, Zhang Y. Effects of 0.4 T rotating magnetic field exposure on density, strength, calcium and metabolism of rat thigh bones. Bioelectromagnetics. 2006;27:1–9. https://doi.org/10.1002/bem.20165.

Article  CAS  PubMed  Google Scholar 

Ren J, et al. LF-MF inhibits iron metabolism and suppresses lung cancer through activation of P53-miR-34a-E2F1/E2F3 pathway. Sci Rep. 2017;7:749. https://doi.org/10.1038/s41598-017-00913-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Z, et al. Effect of low-frequency rotary magnetic fields on advanced gastric cancer: survival and palliation of general symptoms. J Cancer Res Ther. 2018;14:815–9. https://doi.org/10.4103/jcrt.JCRT_991_17.

Article  CAS  PubMed  Google Scholar 

Junka AF, et al. Application of rotating magnetic fields increase the activity of antimicrobials against wound biofilm pathogens. Sci Rep. 2018;8:167. https://doi.org/10.1038/s41598-017-18557-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Woroszyło M et al. The effect of rotating magnetic field on susceptibility profile of methicillin-resistant Staphylococcus aureus strains exposed to activity of different groups of antibiotics. Int J Mol Sci. 2021;22. https://doi.org/10.3390/ijms222111551.

Jedrzejczak-Silicka M, Kordas M, Konopacki M, Rakoczy R. Modulation of cellular response to different parameters of the rotating magnetic field (RMF)-an in vitro wound healing study. Int J Mol Sci. 2021;22. https://doi.org/10.3390/ijms22115785.

Song GL, Ji BM, Zhang XY. Hemoprotective effects of a rotary magnetic field on mice receiving 5-fluorouracil. Chin J Rehabil Theory Pract. 2006;12(3):213–6.

Google Scholar 

Qin S, et al. A magnetic protein biocompass. Nat Mater. 2016;15:217–26. https://doi.org/10.1038/nmat4484.

Article  CAS  PubMed  Google Scholar 

Han Y et al. Rotating magnetic field mitigates ankylosing spondylitis targeting osteocytes and chondrocytes via ameliorating immune dysfunctions. Cells. 2023;2012. https://doi.org/10.3390/cells12070972.

Pan X, Xiao D, Zhang X, Huang Y, Lin B. Study of rotating permanent magnetic field to treat steroid-induced osteonecrosis of femoral head. Int Orthop. 2009;33:617–23. https://doi.org/10.1007/s00264-007-0506-7.

Article  PubMed 

留言 (0)

沒有登入
gif