Short lifespan is one’s fate, long lifespan is one’s achievement: lessons from Daphnia

Dudycha JL. A multi-environment comparison of senescence between sister species of Daphnia. Oecologia. 2003;135:555–63.

Article  PubMed  Google Scholar 

Constantinou J, Sullivan J, Mirbahai L. Ageing differently: sex-dependent ageing rates in Daphnia magna. Exp Gerontol. 2019;121:33–45. https://doi.org/10.1016/j.exger.2019.03.008.

Article  CAS  PubMed  Google Scholar 

Spiridonova O, Kriukov D, Nemirovich-Danchenko N, Peshkin L. On standardization of controls in lifespan studies. Aging (Albany NY). 2024;16(4):3047—3055 .https://doi.org/10.18632/aging.205604

Finch CE, Ruvkun G. The genetics of aging. Annu Rev Genomics Hum Genet. 2001;2:435–62. https://doi.org/10.1146/annurev.genom.2.1.435.

Article  CAS  PubMed  Google Scholar 

Ziehm M, Piper MD, Thornton JM. Analysing variation in Drosophila aging across independent experimental studies: a meta-analysis of survival data. Aging Cell. 2013;12(5):917–22. https://doi.org/10.1111/acel.12123.

Article  CAS  PubMed  Google Scholar 

Lucanic M, Plummer W, Chen E, et al. Impact of genetic background and experimental reproducibility on identifying chemical compounds with robust longevity effects. Nat Commun. 2017;8:14256. https://doi.org/10.1038/ncomms14256.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Banse SA, Lucanic M, Sedore CA, et al. Automated lifespan determination across Caenorhabditis strains and species reveals assay-specific effects of chemical interventions. GeroScience. 2019;41:945–60. https://doi.org/10.1007/s11357-019-00108-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bartke A, Evans TR, Musters CJM. Anti-aging interventions affect lifespan variability in sex, strain, diet and drug dependent fashion. Aging (Albany NY). 2019;11(12):4066–74. https://doi.org/10.18632/aging.102037.

Article  CAS  PubMed  Google Scholar 

Yuan R, Musters CJM, Zhu Y, Evans TR, Sun Y, Chesler EJ, Peters LL, Harrison DE, Bartke A. Genetic differences and longevity-related phenotypes influence lifespan and lifespan variation in a sex-specific manner in mice. Aging Cell. 2020;19(11):e13263. https://doi.org/10.1111/acel.13263.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Urban ND, Cavataio JP, Berry Y, Vang B, Maddali A, Sukpraphrute RJ, Schnell S, Truttmann MC. Explaining inter-lab variance in C. elegans N2 lifespan: making a case for standardized reporting to enhance reproducibility. Exp Gerontol. 2021;156:111622. https://doi.org/10.1016/j.exger.2021.111622

Burnett C, Valentini S, Cabreiro F, Goss M, Somogyvári M, Piper MD, Hoddinott M, Sutphin GL, Leko V, McElwee JJ, Vazquez-Manrique RP, Orfila AM, Ackerman D, Au C, Vinti G, Riesen M, Howard K, Neri C, Bedalov A, Kaeberlein M, Soti C, Partridge L, Gems D. (2011). Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477(7365): 482–485. https://doi.org/10.1038/nature10296.

Kaya A, Phua CZJ, Lee M, Wang L, Tyshkovskiy A, Ma S, Barre B, Liu W, Harrison BR, Zhao X, Zhou X, Wasko BM, Bammler TK, Promislow DE, Kaeberlein M, Gladyshev VN. Evolution of natural lifespan variation and molecular strategies of extended lifespan in yeast. Elife. 2021;9(10):e64860. https://doi.org/10.7554/eLife.64860.

Article  Google Scholar 

Mackay TF. The nature of quantitative genetic variation for Drosophila longevity. Mech Ageing Dev. 2002;123(2–3):95–104. https://doi.org/10.1016/s0047-6374(01)00330-x.

Article  PubMed  Google Scholar 

Dick KB, Ross C, Yampolsky LY. Genetic variation of dietary restriction, nutrient-free water and amino acid supplements effects on lifespan and fecundity of Drosophila. Genetics Research. 2011;93:265–73.

Article  CAS  PubMed  Google Scholar 

Mackay TFC, Richards S, Stone EA, et al. The Drosophila melanogaster genetic reference panel. Nature. 2012;482(7384):173–8. https://doi.org/10.1038/nature10811.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rose MR. Laboratory evolution of postponed senescence in Drosophila melanogaster. Evolution. 1984;38:1004–10.

Article  PubMed  Google Scholar 

Doroszuk A, Jonker MJ, Pul N, Breit TM, Zwaan BJ. Transcriptome analysis of a long-lived natural Drosophila variant: a prominent role of stress- and reproduction-genes in lifespan extension. BMC Genomics. 2012;13:167. https://doi.org/10.1186/1471-2164-13-167.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parker GA, Kohn N, Spirina A, McMillen A, Huang W, Mackay TFC. 2020. Genetic basis of increased lifespan and postponed senescence in Drosophila melanogaster. G3 (Bethesda). Mar 5;10(3):1087–1098. https://doi.org/10.1534/g3.120.401041.

Huang W, Campbell T, Carbone MA, Jones WE, Unselt D, Anholt RRH, Mackay TFC. Context-dependent genetic architecture of Drosophila life span. PLoS Biol. 2020;18(3):e3000645. https://doi.org/10.1371/journal.pbio.3000645.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rohde PD, Bøcker A, Jensen CAB, Bergstrøm AL, Madsen MIJ, Christensen SL, Villadsen SB, Kristensen TN. Genotype and trait specific responses to rapamycin intake in Drosophila melanogaster. Insects. 2021;12(5):474. https://doi.org/10.3390/insects12050474.PMID:34065203;PMCID:PMC8161023.

Article  PubMed  PubMed Central  Google Scholar 

Pallares LF, Lea AJ, Han C, Filippova EV, Andolfatto P, Ayroles JF. Dietary stress remodels the genetic architecture of lifespan variation in outbred Drosophila. Nat Genet. 2023;55(1):123–9. https://doi.org/10.1038/s41588-022-01246-1.

Article  CAS  PubMed  Google Scholar 

Simons MJP, Dobson AJ. The importance of reaction norms in dietary restriction and ageing research. Ageing Res Rev. 2023;87:101926. https://doi.org/10.1016/j.arr.2023.101926.

Article  CAS  PubMed  Google Scholar 

Dudycha JL, Hassel C. Aging in sexual and obligately asexual clones of Daphnia from temporary ponds. J Plankton Res. 2013;35(2):253–9. https://doi.org/10.1093/plankt/fbt008.

Article  PubMed  PubMed Central  Google Scholar 

Lohr JN, David P, Haag CR. Reduced lifespan and increased ageing driven by genetic drift in small populations. Evolution. 2014;68(9):2494–508. https://doi.org/10.1111/evo.12464.

Article  PubMed  Google Scholar 

Coggins BL, Pearson AC, Yampolsky LY. Does geographic variation in thermal tolerance in Daphnia represent trade-offs or conditional neutrality? J Therm Biol. 2021;98:102934. https://doi.org/10.1016/j.jtherbio.2021.102934.

Article  CAS  PubMed  Google Scholar 

Ukhueduan B, Schumpert C, Kim E, Dudycha JL, Patel RC. Relationship between oxidative stress and lifespan in Daphnia pulex. Sci Rep. 2022;12(1):2354. https://doi.org/10.1038/s41598-022-06279-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yampolsky LY, Galimov YR. Evolutionary genetics of aging in Daphnia. Zhurn Obsch Biol. 2005;66(5):416–24.

Google Scholar 

Fontana L, Partridge L, Longo VD. Extending healthy life span—from yeast to humans. Science. 2010;328(5976):321–6. https://doi.org/10.1126/science.1172539.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fontana L, Partridge L. Promoting health and longevity through diet: from model organisms to humans. Cell. 2015;161(1):106–18. https://doi.org/10.1016/j.cell.2015.02.020.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei M, Fabrizio P, Hu J, Ge H, Cheng C, Li L, Longo VD. Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet. 2008;4(1):e13. https://doi.org/10.1371/journal.pgen.0040013.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kauffman AL, Ashraf JM, Corces-Zimmerman MR, Landis JN, Murphy CT. Insulin signaling and dietary restriction differentially influence the decline of learning and memory with age. PLoS Biol. 2010;8(5):e1000372. https://doi.org/10.1371/journal.pbio.1000372.

Article  CAS 

留言 (0)

沒有登入
gif