Language and sensory characteristics are reflected in voice-evoked responses in low birth weight children

Arunachalam, S. & Luyster, R. J. The integrity of lexical acquisition mechanisms in autism spectrum disorders: a research review. Autism Res. 9, 810–828 (2016).

Article  PubMed  Google Scholar 

Gilley, P. M., Sharma, A., Dorman, M. & Martin, K. Developmental changes in refractoriness of the cortical auditory evoked potential. Clin. Neurophysiol. 116, 648–657 (2005).

Article  PubMed  Google Scholar 

Oram Cardy, J. E., Ferrari, P., Flagg, E. J., Roberts, W. & Roberts, T. P. L. Prominence of M50 auditory evoked response over M100 in childhood and autism. Neuroreport 15, 1867–1870 (2004).

Article  PubMed  Google Scholar 

Paetau, R., Ahonen, A., Salonen, O. & Sams, M. Auditory evoked magnetic fields to tones and pseudowords in healthy children and adults. J. Clin. Neurophysiol. 12, 177–185 (1995).

Article  CAS  PubMed  Google Scholar 

Ponton, C., Eggermont, J. J., Khosla, D., Kwong, B. & Don, M. Maturation of human central auditory system activity: separating auditory evoked potentials by dipole source modeling. Clin. Neurophysiol. 113, 407–420 (2002).

Article  PubMed  Google Scholar 

Sharma, A., Kraus, N., McGee, T. J. & Nicol, T. G. Developmental changes in P1 and N1 central auditory responses elicited by consonant-vowel syllables. Electroencephalogr. Clin. Neurophysiol. 104, 540–545 (1997).

Article  CAS  PubMed  Google Scholar 

Yoshimura, Y. et al. The maturation of the P1m component in response to voice from infancy to 3 years of age: a longitudinal study in young children. Brain Behav. 10, e01706 (2020).

Article  PubMed  PubMed Central  Google Scholar 

An, K. M. et al. Brain responses to human-voice processing predict child development and intelligence. Hum. Brain Mapp. 41, 2292–2301 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Yoshimura, Y. et al. Language performance and auditory evoked fields in 2- to 5-year-old children. Eur. J. Neurosci. 35, 644–650 (2012).

Article  PubMed  Google Scholar 

Pihko, E. et al. Language impairment is reflected in auditory evoked fields. Int. J. Psychophysiol. 68, 161–169 (2008).

Article  PubMed  Google Scholar 

Yardimci-Lokmanoglu, B. N., Mutlu, A. & Livanelioglu, A. The early spontaneous movements, and developmental functioning and sensory processing outcomes in toddlers born preterm: a prospective study. Early Hum. Dev. 163, 105508 (2021).

Article  PubMed  Google Scholar 

Goyen, T. A., Lui, K. & Hummell, J. Sensorimotor skills associated with motor dysfunction in children born extremely preterm. Early Hum. Dev. 87, 489–493 (2011).

Article  PubMed  Google Scholar 

Hirvonen, M. et al. Visual and hearing impairments after preterm birth. Pediatrics 142, e20173888 (2018).

Article  PubMed  Google Scholar 

Bucci, M. P., Wiener-Vacher, S., Trousson, C., Baud, O. & Biran, V. Subjective visual vertical and postural capability in children born prematurely. PLoS One 10, e0121616 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Broring, T. et al. Sensory processing difficulties in school-age children born very preterm: an exploratory study. Early Hum. Dev. 117, 22–31 (2018).

Article  PubMed  Google Scholar 

de Paula Machado, A. C. C., de Castro Magalhaes, L., de Oliveira, S. R. & Bouzada, M. C. F. Is sensory processing associated with prematurity, motor and cognitive development at 12 months of age? Early Hum. Dev. 139, 104852 (2019).

Article  PubMed  Google Scholar 

Eeles, A. L. et al. Sensory profiles obtained from parental reports correlate with independent assessments of development in very preterm children at 2 years of age. Early Hum. Dev. 89, 1075–1080 (2013).

Article  PubMed  Google Scholar 

Nowell, S. W. et al. Joint attention and sensory-regulatory features at 13 and 22 months as predictors of preschool language and social-communication outcomes. J. Speech Lang. Hear R. 63, 3100–3116 (2020).

Article  Google Scholar 

Kiefer, M. & Pulvermuller, F. Conceptual representations in mind and brain: theoretical developments, current evidence and future directions. Cortex 48, 805–825 (2012).

Article  PubMed  Google Scholar 

Gallese, V. & Lakoff, G. The brain’s concepts: the role of the sensory-motor system in conceptual knowledge. Cogn. Neuropsychol. 22, 455–479 (2005).

Article  PubMed  Google Scholar 

Pulvermuller, F., Hauk, O., Nikulin, V. V. & Ilmoniemi, R. J. Functional links between motor and language systems. Eur. J. Neurosci. 21, 793–797 (2005).

Article  PubMed  Google Scholar 

Matsuzaki, J. et al. Progressively increased M50 responses to repeated sounds in autism spectrum disorder with auditory hypersensitivity: a magnetoencephalographic study. PloS one 9, e102599 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Lord, C. et al. The Autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J. Autism Dev. Disord. 30, 205–223 (2000).

Article  CAS  PubMed  Google Scholar 

Kaufman, A. & Kaufman, N. Circle Pines, MN: American Guidance Service, (1983).

Dunn, W. Sensory Profile User’s Manual Psychological Corporation, (1999).

Dunn, W. O., FAOTA. Japanese Version Sensory Profile. Nihon Bunka Kagakusha Co. Ltd (2015).

Yoshimura, Y. et al. AtypicaL Development Of The Central Auditory System In Young Children With Autism Spectrum Disorder. Autism Res. 9, 1216–1226 (2016).

Article  PubMed  Google Scholar 

Dupaul, G. J., Power, T. J., Anastopoulous, A. D., Reid, R. Adhd Rating Scale-IV:Checklists, Norms, and Clinical Interpretation The Guilford Press, (1998).

Bellis, T. J., Nicol, T. & Kraus, N. Aging affects hemispheric asymmetry in the neural representation of speech sounds. J. Neurosci. 20, 791–797 (2000).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schwartz, J. & Tallal, P. Rate of acoustic change may underlie hemispheric specialization for speech perception. Science 207, 1380–1381 (1980).

Article  CAS  PubMed  Google Scholar 

Wada, J. A., Clarke, R. & Hamm, A. Cerebral hemispheric asymmetry in humans. cortical speech zones in 100 adults and 100 infant brains. Arch. Neurol. 32, 239–246 (1975).

Article  CAS  PubMed  Google Scholar 

Chi, J. G., Dooling, E. C. & Gilles, F. H. Left-right asymmetries of the temporal speech areas of the human fetus. Arch. Neurol. 34, 346–348 (1977).

Article  CAS  PubMed  Google Scholar 

Balsamo, L. M. et al. A functional magnetic resonance imaging study of left hemisphere language dominance in children. Arch. Neurol. 59, 1168–1174 (2002).

Article  PubMed  Google Scholar 

Kuuluvainen, S., Leminen, A. & Kujala, T. Auditory evoked potentials to speech and nonspeech stimuli are associated with verbal skills in preschoolers. Dev. Cogn. Neurosci. 19, 223–232 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Mikkola, K. et al. Auditory event-related potentials and cognitive function of preterm children at five years of age. Clin. Neurophysiol. 118, 1494–1502 (2007).

Article  PubMed  Google Scholar 

Hovel, H. et al. Auditory event-related potentials are related to cognition at preschool age after very preterm birth. Pediatr. Res 77, 570–578 (2015).

Article  PubMed  Google Scholar 

Yoshimura, Y. et al. Atypical brain lateralisation in the auditory cortex and language performance in 3- to 7-year-old children with high-functioning autism spectrum disorder: a child-customised magnetoencephalography (meg) study. Mol. Autism 4, 38 (2013).

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif