Prediction of spontaneous distal ureteral stone passage using artificial intelligence

EAU Guidelines (2023) Edn. presented at the EAU Annual Congress Milan. ISBN 978-94-92671-19-6

Dellabella M, Milanese G, Muzzonigro G (2003) Efficacy of tamsulosin in the medical management of juxtavesical ureteral stones. J Urol 170(6 Pt 1):2202–2205

Article  CAS  PubMed  Google Scholar 

Yoshida T et al (2019) Ureteral wall thickness as a significant factor in predicting spontaneous passage of ureteral stones of≤ 10 mm: a preliminary report. World J Urol 37:913–919

Article  PubMed  Google Scholar 

Yallappa S et al (2018) Natural history of conservatively managed ureteral stones: analysis of 6600 patients. J Endourol 32(5):371–379

Article  PubMed  Google Scholar 

Lane J et al (2020) Correlation of operative time with outcomes of ureteroscopy and stone treatment: a systematic review of literature. Curr Urol Rep 21(4):17

Article  PubMed  Google Scholar 

Heidenberg DJ et al (2023) Timing of ureteral stent removal after ureteroscopy on stent-related symptoms: a validated questionnaire comparison of 3 and 7 days stent duration. J Endourol 38:82

Article  PubMed  Google Scholar 

Geraghty RM et al (2023) Routine urinary biochemistry does not accurately predict stone type nor recurrence in kidney stone formers: a multicentre, multimodel, externally validated machine-learning study. J Endourol 37(12):1295–1304

Article  PubMed  Google Scholar 

Li P et al (2023) Machine learning algorithms in predicting the recurrence of renal stones using clinical data. Urolithiasis 52(1):12

Article  CAS  PubMed  Google Scholar 

Chmiel JA et al (2023) Predictive modelling of urinary stone composition using machine learning and clinical data: implications for treatment strategies and pathophysiological insights. J Endourol. https://doi.org/10.1089/end.2023.0446

Article  PubMed  Google Scholar 

Abbod MF et al (2007) Application of artificial intelligence to the management of urological cancer. J Urol 178(4 Pt 1):1150–1156

Article  PubMed  Google Scholar 

Scott Wang HH, Vasdev R, Nelson CP (2024) Artificial intelligence in pediatric urology. Urol Clin North Am 51(1):91–103

Article  PubMed  Google Scholar 

Nedbal C et al (2023) The role of “artificial intelligence, machine learning, virtual reality, and radiomics” in PCNL: a review of publication trends over the last 30 years. Ther Adv Urol 15:17562872231196676

Article  PubMed  PubMed Central  Google Scholar 

Li J et al (2023) An artificial intelligence method for predicting postoperative urinary incontinence based on multiple anatomic parameters of MRI. Heliyon 9(10):e20337

Article  PubMed  PubMed Central  Google Scholar 

Bianchi G et al (2023) Artificial intelligence evaluation of confocal microscope prostate images: our preliminary experience. Minerva Urol Nephrol 75(5):545–547

Article  PubMed  Google Scholar 

Checcucci E et al (2020) Applications of neural networks in urology: a systematic review. Curr Opin Urol 30(6):788–807

Article  PubMed  Google Scholar 

Liu Y et al (2023) Heat shock protein family A member 8 is a prognostic marker for bladder cancer: evidences based on experiments and machine learning. J Cell Mol Med 27:3995

Article  CAS  PubMed  PubMed Central  Google Scholar 

Flerlage T et al (2023) Mortality risk factors in pediatric onco-critical care patients and machine learning derived early onco-critical care phenotypes in a retrospective cohort. Crit Care Explor 5(10):e0976

Article  PubMed  PubMed Central  Google Scholar 

Wu Y et al (2023) A retrospective study using machine learning to develop predictive model to identify urinary infection stones in vivo. Urolithiasis 51(1):84

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haifler M et al (2022) A machine learning model for predicting surgical intervention in renal colic due to ureteral stone(s) < 5 mm. Sci Rep 12(1):11788

Article  CAS  PubMed  PubMed Central  Google Scholar 

Katz JE et al (2023) The development of an artificial intelligence model based solely on computer tomography successfully predicts which patients will pass obstructing ureteral calculi. Urology 174:58–63

Article  PubMed  Google Scholar 

Dal Moro F et al (2006) A novel approach for accurate prediction of spontaneous passage of ureteral stones: support vector machines. Kidney Int 69(1):157–160

Article  Google Scholar 

Kothari D, Patel M, Sharma AK (2021) Implementation of grey scale normalization in machine learning & artificial intelligence for bioinformatics using convolutional neural networks. In: 2021 6th international conference on inventive computation technologies (ICICT)

Ogutu JO, Piepho H-P, Schulz-Streeck T (2011) A comparison of random forests, boosting and support vector machines for genomic selection. BMC Proc 5(3):S11

Article  PubMed  PubMed Central  Google Scholar 

Yonazu S et al (2024) Cost-effectiveness analysis of the artificial intelligence diagnosis support system for early gastric cancers. DEN Open 4(1):e289

Article  PubMed  Google Scholar 

Manolakos D et al (2024) Use of an elastic-scattering spectroscopy and artificial intelligence device in the assessment of lesions suggestive of skin cancer: a comparative effectiveness study. JAAD Int 14:52–58

Article  PubMed  Google Scholar 

Pandey A et al (2023) A prospective evaluation of patient-reported outcomes during follow-up of ureteral stones managed with medical expulsive treatment (MET). Urolithiasis 51(1):56

Article  PubMed  Google Scholar 

Golomb D et al (2023) Spontaneous stone expulsion in patients with history of urolithiasis. Urologia 90(2):329–334

Article  PubMed  Google Scholar 

Aghaways I et al (2022) The role of inflammatory serum markers and ureteral wall thickness on spontaneous passage of ureteral stone < 10 mm: a prospective cohort study. Ann Med Surg (Lond) 80:104198

PubMed  Google Scholar 

Sharma G et al (2022) Comparison of efficacy of three commonly used alpha-blockers as medical expulsive therapy for distal ureter stones: a systematic review and network meta-analysis. Int Braz J Urol 48(5):742–759

Article  PubMed  Google Scholar 

Imperatore V et al (2014) Medical expulsive therapy for distal ureteric stones: tamsulosin versus silodosin. Arch Ital Urol Androl 86(2):103–107

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif