Architecture of the RNF1 complex that drives biological nitrogen fixation

Canfield, D. E., Glazer, A. N. & Falkowski, P. G. The evolution and future of Earth’s nitrogen cycle. Science 330, 192–196 (2010).

Article  CAS  PubMed  Google Scholar 

Einsle, O. & Rees, D. C. Structural enzymology of nitrogenase enzymes. Chem. Rev. 120, 4969–5004 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seefeldt, L. C. et al. Reduction of substrates by nitrogenases. Chem. Rev. 120, 5082–5106 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoffman, B. M., Lukoyanov, D., Yang, Z. Y., Dean, D. R. & Seefeldt, L. C. Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem. Rev. 114, 4041–4062 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rohde, M., Sippel, D., Trncik, C., Andrade, S. L. A. & Einsle, O. The critical E4 state of nitrogenase catalysis. Biochemistry 57, 5497–5504 (2018).

Article  CAS  PubMed  Google Scholar 

Rutledge, H. L. & Tezcan, F. A. Electron transfer in nitrogenase. Chem. Rev. 120, 5158–5193 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Poudel, S. et al. Electron transfer to nitrogenase in different genomic and metabolic backgrounds. J. Bacteriol. 200, e00757-17 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Shah, V. K., Stacey, G. & Brill, W. J. Electron transport to nitrogenase—purification and characterization of pyruvate:flavodoxin oxidoreductase, the nifJ gene product. J. Biol. Chem. 258, 2064–2068 (1983).

Article  Google Scholar 

Burén, S., Jimenez-Vicente, E., Echavarri-Erasun, C. & Rubio, L. M. Biosynthesis of nitrogenase cofactors. Chem. Rev. 120, 4921–4968 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Ledbetter, R. N. et al. The electron bifurcating FixABCX protein complex from Azotobacter vinelandii: generation of low-potential reducing equivalents for nitrogenase catalysis. Biochemistry 56, 4177–4190 (2017).

Article  CAS  PubMed  Google Scholar 

Curatti, L., Brown, C. S., Ludden, P. W. & Rubio, L. M. Genes required for rapid expression of nitrogenase activity in Azotobacter vinelandii. Proc. Natl Acad. Sci. USA 102, 6291–6296 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alleman, A. B. & Peters, J. W. Mechanisms for generating low potential electrons across the metabolic diversity of nitrogen-fixing bacteria. Appl. Environ. Microbiol. 89, e0037823 (2023).

Article  PubMed  Google Scholar 

Schmehl, M. et al. Identification of a new class of nitrogen fixation genes in Rhodobacter capsulatus—a putative membrane complex involved in electron transport to nitrogenase. Mol. Gen. Genet. 241, 602–615 (1993).

Article  CAS  PubMed  Google Scholar 

Reyes-Prieto, A., Barquera, B. & Juárez, O. Origin and evolution of the sodium-pumping NADH: ubiquinone oxidoreductase. PLoS ONE 9, e96696 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Biegel, E., Schmidt, S., González, J. M. & Müller, V. Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes. Cell. Mol. Life Sci. 68, 613–634 (2011).

Article  CAS  PubMed  Google Scholar 

Boiangiu, C. D. et al. Sodium ion pumps and hydrogen production in glutamate fermenting anaerobic bacteria. J. Mol. Microbiol. Biotech. 10, 105–119 (2005).

CAS  Google Scholar 

Kuhns, M., Trifunović, D., Huber, H. & Müller, V. The Rnf complex is a Na+-coupled respiratory enzyme in a fermenting bacterium, Thermotoga maritima. Commun. Biol. 3, 431 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Westphal, L., Wiechmann, A., Baker, J., Minton, N. P. & Müller, V. The Rnf complex is an energy-coupled transhydrogenase essential to reversibly link cellular NADH and ferredoxin pools in the acetogen Acetobacterium woodii. J. Bacteriol. 200, e00357 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hess, V., Schuchmann, K. & Müller, V. The ferredoxin: NAD+ oxidoreductase (Rnf) from the acetogen Acetobacterium woodii requires Na+ and is reversibly coupled to the membrane potential. J. Biol. Chem. 288, 31496–31502 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tremblay, P. L., Zhang, T., Dar, S. A., Leang, C. & Lovley, D. R. The Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin:NAD+ oxidoreductase essential for autotrophic growth. mBio 4, e00406 (2013).

Article  CAS  Google Scholar 

Biegel, E. & Müller, V. Bacterial Na+-translocating ferredoxin: NAD+ oxidoreductase. Proc. Natl Acad. Sci. USA 107, 18138–18142 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schoelmerich, M. C., Katsyv, A., Donig, J., Hackmann, T. J. & Müller, V. Energy conservation involving 2 respiratory circuits. Proc. Natl Acad. Sci. USA 117, 1167–1173 (2020).

Article  CAS  PubMed  Google Scholar 

Steuber, J. et al. Central role of the Na+-translocating NADH: quinone oxidoreductase (Na+-NQR) in sodium bioenergetics of Vibrio cholerae. Biol. Chem. 395, 1389–1399 (2014).

Article  CAS  PubMed  Google Scholar 

Juárez, O. & Barquera, B. Insights into the mechanism of electron transfer and sodium translocation of the Na+-pumping NADH:quinone oxidoreductase. Biochem. Biophys. Acta 1817, 1823–1832 (2012).

PubMed  Google Scholar 

Vitt, S., Prinz, S., Eisinger, M., Ermler, U. & Buckel, W. Purification and structural characterization of the Na+-translocating ferredoxin: NAD+ reductase (Rnf) complex of Clostridium tetanomorphum. Nat. Commun. 13, 6315 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Steuber, J. et al. Structure of the V. cholerae Na+-pumping NADH:quinone oxidoreductase. Nature 516, 62–67 (2014).

Article  CAS  PubMed  Google Scholar 

Kishikawa, J. et al. Cryo-EM structures of Na+-pumping NADH-ubiquinone oxidoreductase from Vibrio cholerae. Nat. Commun. 13, 4082 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hau, J. L. et al. Conformational coupling of redox-driven Na+-translocation in Vibrio cholerae NADH:quinone oxidoreductase. Nat. Struct. Mol. Biol. 30, 1686–1694 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, J. G., Xie, X. Q., Yang, M. X., Dixon, R. & Wang, Y. P. Modular electron-transport chains from eukaryotic organelles function to support nitrogenase activity. Proc. Natl Acad. Sci. USA 114, E2460–E2465 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Ryu, M. H. et al. Control of nitrogen fixation in bacteria that associate with cereals. Nat. Microbiol 5, 314–330 (2020).

Article  CAS  PubMed  Google Scholar 

Setubal, J. C. et al. Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized to support diverse anaerobic metabolic processes. J. Bacteriol. 19

留言 (0)

沒有登入
gif