Premature thymic functional senescence is a hallmark of childhood acute lymphoblastic leukemia survivorship

Thomas R, Wang W, Su D-M. Contributions of age-related thymic involution to immunosenescence and inflammaging. Immun Ageing. 2020;17:2.

Article  PubMed  PubMed Central  Google Scholar 

Mittelbrunn M, Kroemer G. Hallmarks of T cell aging. Nat Immunol. 2021;22:687–98.

Article  CAS  PubMed  Google Scholar 

Douek DC, McFarland RD, Keiser PH, Gage EA, Massey JM, Haynes BF, et al. Changes in thymic function with age and during the treatment of HIV infection. Nature. 1998;396:690.

Article  CAS  PubMed  Google Scholar 

Geenen V, Poulin JF, Dion ML, Martens H, Castermans E, Hansenne I, et al. Quantification of T cell receptor rearrangement excision circles to estimate thymic function: an important new tool for endocrine-immune physiology. J Endocrinol. 2003;176:305–11.

Article  CAS  PubMed  Google Scholar 

Ringhoffer S, Rojewski M, Dohner H, Bunjes D, Ringhoffer M. T-cell reconstitution after allogeneic stem cell transplantation: assessment by measurement of the sjTREC/betaTREC ratio and thymic naive T cells. Haematologica. 2013;98:1600–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clave E, Araujo IL, Alanio C, Patin E, Bergstedt J, Urrutia A, et al. Human thymopoiesis is influenced by a common genetic variant within the TCRA-TCRD locus. Sci Transl Med. 2018;10:eaao2966.

Article  PubMed  Google Scholar 

Cho S, Jung S-E, Hong SR, Lee EH, Lee JH, Lee SD, et al. Independent validation of DNA-based approaches for age prediction in blood. Forensic Sci Int: Genet. 2017;29:250–6.

Article  CAS  PubMed  Google Scholar 

Richardson MW, Sverstiuk A, Hendel H, Cheung TW, Zagury JF, Rappaport J. Analysis of telomere length and thymic output in fast and slow/non-progressors with HIV infection. Biomedicine Pharmacother. 2000;54:21–31.

Article  CAS  Google Scholar 

McCullough KM, Katrinli S, Hartmann J, Lori A, Klengel C, Missig G, et al. Blood levels of T-cell receptor excision circles (TRECs) provide an index of exposure to traumatic stress in mice and humans. Transl Psychiatry. 2022;12:423.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kooshesh KA, Foy BH, Sykes DB, Gustafsson K, Scadden DT. Health consequences of thymus removal in adults. N Engl J Med. 2023;389:406–17.

Article  PubMed  PubMed Central  Google Scholar 

Ellison LF, Xie L, Sung L. Trends in paediatric cancer survival in Canada, 1992 to 2017. Health Rep. 2021;32:3–16.

PubMed  Google Scholar 

Fulbright JM, Raman S, McClellan WS, August KJ. Late effects of childhood leukemia therapy. Curr Hematologic Malignancy Rep. 2011;6:195–205.

Article  Google Scholar 

Marcoux S, Drouin S, Laverdiere C, Alos N, Andelfinger GU, Bertout L, et al. The PETALE study: Late adverse effects and biomarkers in childhood acute lymphoblastic leukemia survivors. Pediatr Blood Cancer. 2017;64:e26361.

Ariffin H, Azanan MS, Ghafar SSA, Oh L, Lau KH, Thirunavakarasu T, et al. Young adult survivors of childhood acute lymphoblastic leukemia show evidence of chronic inflammation and cellular aging. Cancer. 2017;123:4207–14.

Article  CAS  PubMed  Google Scholar 

Ness KK, Kirkland JL, Gramatges MM, Wang Z, Kundu M, McCastlain K, et al. Premature physiologic aging as a paradigm for understanding increased risk of adverse health across the lifespan of survivors of childhood cancer. J Clin Oncol. 2018;36:2206–15.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ness KK, Krull KR, Jones KE, Mulrooney DA, Armstrong GT, Green DM, et al. Physiologic frailty as a sign of accelerated aging among adult survivors of childhood cancer: a report from the St Jude Lifetime cohort study. J Clin Oncol. 2013;31:4496.

Article  PubMed  PubMed Central  Google Scholar 

Morel S, Leveille P, Samoilenko M, Franco A, England J, Malaquin N, et al. Biomarkers of cardiometabolic complications in survivors of childhood acute lymphoblastic leukemia. Sci Rep. 2020;10:21507.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kudlow BA, Kennedy BK, Monnat RJ. Werner and Hutchinson–Gilford progeria syndromes: mechanistic basis of human progeroid diseases. Nat Rev Mol Cell Biol. 2007;8:394–404.

Article  CAS  PubMed  Google Scholar 

Fagnoni FF, Lozza L, Zibera C, Zambelli A, Ponchio L, Gibelli N, et al. T-cell dynamics after high-dose chemotherapy in adults: elucidation of the elusive CD8+ subset reveals multiple homeostatic T-cell compartments with distinct implications for immune competence. Immunology. 2002;106:27–37.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marcoux S, Le ON, Langlois-Pelletier C, Laverdiere C, Hatami A, Robaey P, et al. Expression of the senescence marker p16INK4a in skin biopsies of acute lymphoblastic leukemia survivors: a pilot study. Radiat Oncol. 2013;8:252.

Article  PubMed  PubMed Central  Google Scholar 

Velardi E, Tsai JJ, van den Brink MRM. T cell regeneration after immunological injury. Nat Rev Immunol. 2021;21:277–91.

Article  CAS  PubMed  Google Scholar 

Verma R, Foster RE, Horgan K, Mounsey K, Nixon H, Smalle N, et al. Lymphocyte depletion and repopulation after chemotherapy for primary breast cancer. Breast Cancer Res. 2016;18:10.

Article  PubMed  PubMed Central  Google Scholar 

Wilson CL, Chemaitilly W, Jones KE, Kaste SC, Srivastava DK, Ojha RP, et al. Modifiable factors associated with aging phenotypes among adult survivors of childhood acute lymphoblastic leukemia. J Clin Oncol. 2016;34:2509–15.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carleton N, McAuliffe PF. Are the chronological age cutoffs used in clinical oncology guidelines biologically meaningful? Nat Rev Clin Oncol. 2022;19:745–6.

Article  PubMed  PubMed Central  Google Scholar 

Guida JL, Ahles TA, Belsky D, Campisi J, Cohen HJ, DeGregori J, et al. Measuring aging and identifying aging phenotypes in cancer survivors. JNCI: J Natl Cancer Inst. 2019;111:1245–54.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al-Regaiey K, Su L, et al. Ink4a/Arf expression is a biomarker of aging. J Clin Investig. 2004;114:1299–307.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smitherman AB, Wood WA, Mitin N, Miller VLA, Deal AM, Davis IJ, et al. Accelerated aging among childhood, adolescent, and young adult cancer survivors is evidenced by increased expression of p16INK4a and frailty. Cancer. 2020;126:4975–83.

Article  CAS  PubMed  Google Scholar 

Song N, Li Z, Qin N, Howell CR, Wilson CL, Easton J, et al. Shortened leukocyte telomere length associates with an increased prevalence of chronic health conditions among survivors of childhood cancer: a report from the St. Jude Lifetime Cohort. Clin Cancer Res. 2020;26:2362–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yousefzadeh MJ, Schafer MJ, Noren Hooten N, Atkinson EJ, Evans MK, Baker DJ, et al. Circulating levels of monocyte chemoattractant protein‐1 as a potential measure of biological age in mice and frailty in humans. Aging cell. 2018;17:e12706.

Article  PubMed  Google Scholar 

Qin N, Li Z, Song N, Wilson CL, Easton J, Mulder H, et al. Epigenetic age acceleration and chronic health conditions among adult survivors of childhood cancer. JNCI: J Natl Cancer Inst. 2021;113:597–605.

Article  PubMed  Google Scholar 

Silverman LB, Stevenson KE, O’Brien JE, Asselin BL, Barr RD, Clavell L, et al. Long-term results of Dana-Farber Cancer Institute ALL Consortium protocols for children with newly diagnosed acute lymphoblastic leukemia (1985–2000). Leukemia. 2010;24:320–34.

Article 

留言 (0)

沒有登入
gif