Thyroid imaging reporting and data system with MRI morphological features for thyroid nodules: diagnostic performance and unnecessary biopsy rate

Guth S, Theune U, Aberle J, Galach A, Bamberger CM. Very high prevalence of thyroid nodules detected by high frequency (13 MHz) ultrasound examination. Eur J Clin Invest. 2009;39:699–706.

Article  CAS  PubMed  Google Scholar 

Roman BR, Morris LG, Davies L. The thyroid cancer epidemic, 2017 perspective. Curr Opin Endocrinol Diabetes Obes. 2017;24:332–6.

Article  PubMed  PubMed Central  Google Scholar 

Vaccarella S, Dal Maso L, Laversanne M, Bray F, Plummer M, Franceschi S. The impact of diagnostic changes on the rise in thyroid cancer incidence: a population-based study in selected high-resource countries. Thyroid. 2015;25:1127–36.

Article  PubMed  Google Scholar 

Haugen BR, Alexander EK, Bible KC, et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26:1–133.

Article  PubMed  PubMed Central  Google Scholar 

Durante C, Grani G, Lamartina L, Filetti S, Mandel SJ, Cooper DS. The diagnosis and management of thyroid nodules: a review. JAMA. 2018;319:914–24.

Article  PubMed  Google Scholar 

Megwalu UC, Moon PK. Thyroid cancer incidence and mortality trends in the United States: 2000–2018. Thyroid. 2022;32:560–70.

Article  CAS  PubMed  Google Scholar 

Qin P, Wu K, Hu Y, Zeng J, Chai X. Diagnosis of Benign and malignant thyroid nodules using combined conventional ultrasound and ultrasound elasticity imaging. IEEE J Biomed Health Inform. 2020;24:1028–36.

Article  PubMed  Google Scholar 

Horvath E, Majlis S, Rossi R, et al. An ultrasonogram reporting system for thyroid nodules stratifying cancer risk for clinical management. J Clin Endocrinol Metab. 2009;94:1748–51.

Article  CAS  PubMed  Google Scholar 

Kwak JY, Han KH, Yoon JH, et al. Thyroid imaging reporting and data system for US features of nodules: a step in establishing better stratification of cancer risk. Radiology. 2011;260:892–9.

Article  PubMed  Google Scholar 

Park JY, Lee HJ, Jang HW, et al. A proposal for a thyroid imaging reporting and data system for ultrasound features of thyroid carcinoma. Thyroid. 2009;19:1257–64.

Article  PubMed  Google Scholar 

Tessler FN, Middleton WD, Grant EG, et al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): white paper of the ACR TI-RADS committee. J Am Coll Radiol. 2017;14:587–95.

Article  PubMed  Google Scholar 

Kim DH, Chung SR, Choi SH, Kim KW. Accuracy of thyroid imaging reporting and data system category 4 or 5 for diagnosing malignancy: a systematic review and meta-analysis. Eur Radiol. 2020;30:5611–24.

Article  PubMed  Google Scholar 

Turkoglu S, Kayan M. Differentiation between benign and malignant ovarian masses using multiparametric MRI. Diagn Interv Imaging. 2020;101:147–55.

Article  CAS  PubMed  Google Scholar 

Yun JS, Lee MH, Lee SM, et al. Peripheral nerve sheath tumor: differentiation of malignant from benign tumors with conventional and diffusion-weighted MRI. Eur Radiol. 2021;31:1548–57.

Article  PubMed  Google Scholar 

Tan H, Chen J, Zhao YL, et al. Feasibility of intravoxel incoherent motion for differentiating benign and malignant thyroid nodules. Acad Radiol. 2019;26:147–53.

Article  PubMed  Google Scholar 

Ramli Hamid MT, Ab Mumin N, Wong YV, Chan WY, Rozalli FI, Rahmat K. The effectiveness of an ultrafast breast MRI protocol in the differentiation of benign and malignant breast lesions. Clin Radiol. 2023;78:444–50.

Article  CAS  PubMed  Google Scholar 

Li HM, Feng F, Qiang JW, et al. Quantitative dynamic contrast-enhanced MR imaging for differentiating benign, borderline, and malignant ovarian tumors. Abdom Radiol (NY). 2018;43:3132–41.

Article  PubMed  Google Scholar 

Zhou J, Zhang Y, Chang KT, et al. Diagnosis of benign and malignant breast lesions on DCE-MRI by using radiomics and deep learning with consideration of peritumor tissue. J Magn Reson Imaging. 2020;51:798–809.

Article  PubMed  Google Scholar 

Monisha V, Rache Gowda N, Anil Kumar S. The role of diffusion-weighted magnetic resonance imaging in differentiating benign from malignant thyroid nodules: a descriptive observational study. Cureus. 2022;14:e30493.

PubMed  PubMed Central  Google Scholar 

Sharafeldeen A, Elsharkawy M, Khaled R, et al. Texture and shape analysis of diffusion-weighted imaging for thyroid nodules classification using machine learning. Med Phys. 2022;49:988–99.

Article  PubMed  Google Scholar 

Shi R, Yao Q, Wu L, et al. T2* mapping at 3.0T MRI for differentiation of papillary thyroid carcinoma from benign thyroid nodules. J Magn Reson Imaging. 2016;43:956–61.

Article  PubMed  Google Scholar 

Song MH, Jin YF, Guo JS, et al. Application of whole-lesion intravoxel incoherent motion analysis using iZOOM DWI to differentiate malignant from benign thyroid nodules. Acta Radiol. 2019;60:1127–34.

Article  PubMed  Google Scholar 

Wang Q, Guo Y, Zhang J, et al. Diagnostic value of high b-value (2000 s/mm2) DWI for thyroid micronodules. Medicine (Baltimore). 2019;98:e14298.

Article  PubMed  Google Scholar 

Castellana M, Castellana C, Treglia G, et al. Performance of five ultrasound risk stratification systems in selecting thyroid nodules for FNA. J Clin Endocrinol Metab. 2020;105:dgz170.

Article  PubMed  Google Scholar 

Grani G, Lamartina L, Ascoli V, et al. Reducing the number of unnecessary thyroid biopsies while improving diagnostic accuracy: toward the “Right” TIRADS. J Clin Endocrinol Metab. 2019;104:95–102.

Article  PubMed  Google Scholar 

Huh S, Lee HS, Yoon J, et al. Diagnostic performances and unnecessary US-FNA rates of various TIRADS after application of equal size thresholds. Sci Rep. 2020;10:10632.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng JY, Pan FS, Wang W, et al. Malignancy risk stratification and FNA recommendations for thyroid nodules: a comparison of ACR TI-RADS, AACE/ACE/AME and ATA guidelines. Am J Otolaryngol. 2020;41:102625.

Article  PubMed  Google Scholar 

Zhang WB, Xu HX, Zhang YF, et al. Comparisons of ACR TI-RADS, ATA guidelines, Kwak TI-RADS, and KTA/KSThR guidelines in malignancy risk stratification of thyroid nodules. Clin Hemorheol Microcirc. 2020;75:219–32.

Article  CAS  PubMed  Google Scholar 

Huang Y, Hong Y, Xu W, Song K, Huang P. Contrast-enhanced ultrasound improves the accuracy of the ACR TI-RADS in the diagnosis of thyroid nodules located in the Isthmus. Ultraschall Med. 2022;43:599–607.

Article  PubMed  Google Scholar 

Luo P, Fang Z, Zhang P, et al. Radiomics score combined with ACR TI-RADS in discriminating benign and malignant thyroid nodules based on ultrasound images: a retrospective study. Diagnostics (Basel). 2021;11:1011.

Article  PubMed  Google Scholar 

Padhani AR, Liu G, Koh DM, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia. 2009;11:102–25.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Surov A, Meyer HJ, Wienke A. Correlation between apparent diffusion coefficient (ADC) and cellularity is different in several tumors: a meta-analysis. Oncotarget. 2017;8:59492–9.

Article  PubMed  PubMed Central  Google Scholar 

Feeney C, Lingam RK, Lee V, Rahman F, Nagendran S. Non-EPI-DWI for detection, disease monitoring, and clinical decision-making in thyroid eye disease. AJNR Am J Neuroradiol. 2020;41:1466–72.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif