Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 1993;362(6423):841–4.
Article CAS PubMed Google Scholar
Jain RK, Duda DG, Clark JW, Loeffler JS. Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol. 2006;3(1):24–40.
Article CAS PubMed Google Scholar
Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, Lilenbaum R. Johnson DHJNEJoM: Paclitaxel–carboplatin alone or with bevacizumab for non–small-cell lung cancer. N Engl J Med. 2006;355(24):2542–50.
Article CAS PubMed Google Scholar
Reck M, Von Pawel J. Zatloukal Pv, Ramlau R, Gorbounova V, Hirsh V, Leighl N, Mezger J, Archer V, Moore NJAoo: Overall survival with cisplatin–gemcitabine and bevacizumab or placebo as first-line therapy for nonsquamous non-small-cell lung cancer: results from a randomised phase III trial (AVAiL). Ann Oncol. 2010;21(9):1804–9.
Article CAS PubMed PubMed Central Google Scholar
Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ. Jain RKJCr: Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res. 2004;64(11):3731–6.
Article CAS PubMed Google Scholar
Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Me. 2004;350(23):2335–42.
Huang Y, Yuan J, Righi E, Kamoun WS, Ancukiewicz M, Nezivar J, Santosuosso M, Martin JD, Martin MR, Vianello F. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc Natl Acad Sci. 2012;109(43):17561–6.
Article CAS PubMed PubMed Central Google Scholar
Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, Jain RK. Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev. 2011;91(3):1071–121.
Article CAS PubMed Google Scholar
Duda DG. Molecular biomarkers of response to antiangiogenic therapy for cancer. Int Sch Res Not. 2012;2012(1):587259.
Fukumura D, Duda DG, Munn LL, Jain RK. Tumor microvasculature and microenvironment: novel insights through intravital imaging in pre-clinical models. Microcirculation. 2010;17(3):206–25.
Article CAS PubMed PubMed Central Google Scholar
Wang S, Liu J, Goh CC, Ng LG, Liu B. NIR-II-Excited Intravital Two-Photon Microscopy Distinguishes Deep Cerebral and Tumor Vasculatures with an Ultrabright NIR-I AIE Luminogen. Adv Mater. 2019;31(44): e1904447.
Kalpathy-Cramer J, Gerstner ER, Emblem KE, Andronesi O, Rosen B. Advanced magnetic resonance imaging of the physical processes in human glioblastoma. Cancer Res. 2014;74(17):4622–37.
Article CAS PubMed PubMed Central Google Scholar
Kickingereder P, Sahm F, Wiestler B, Roethke M, Heiland S, Schlemmer H-P, Wick W, von Deimling A, Bendszus M, Radbruch A. Evaluation of microvascular permeability with dynamic contrast-enhanced MRI for the differentiation of primary CNS lymphoma and glioblastoma: radiologic-pathologic correlation. Am J Neuroradiol. 2014;35(8):1503–8.
Article CAS PubMed PubMed Central Google Scholar
Padhani AR, Khan AA. Diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) for monitoring anticancer therapy. Target Oncol. 2010;5(1):39–52.
Agrawal R, Li LKH, Nakhate V, Khandelwal N, Mahendradas P. Choroidal vascularity index in Vogt-Koyanagi-Harada disease: an EDI-OCT derived tool for monitoring disease progression. Translational vision science & technology. 2016;5(4):7–7.
Clark DP, Ghaghada K, Moding EJ, Kirsch DG, Badea CT. In vivo characterization of tumor vasculature using iodine and gold nanoparticles and dual energy micro-CT. Phys Med Biol. 2013;58(6):1683.
Article PubMed PubMed Central Google Scholar
Cui Y, Liu H, Liang S, Zhang C, Cheng W, Hai W, Yin B, Wang D. The feasibility of 18F-AlF-NOTA-PRGD2 PET/CT for monitoring early response of Endostar antiangiogenic therapy in human nasopharyngeal carcinoma xenograft model compared with 18F-FDG. Oncotarget. 2016;7(19):27243.
Article PubMed PubMed Central Google Scholar
Valable S, Petit E, Roussel S, Marteau L, Toutain J, Divoux D, Sobrio F, Delamare J, Barre L, Bernaudin M. Complementary information from magnetic resonance imaging and (18)F-fluoromisonidazole positron emission tomography in the assessment of the response to an antiangiogenic treatment in a rat brain tumor model. Nucl Med Biol. 2011;38(6):781–93.
Ho YJ, Chu SW, Liao EC, Fan CH, Chan HL, Wei KC, Yeh CK. Normalization of Tumor Vasculature by Oxygen Microbubbles with Ultrasound. Theranostics. 2019;9(24):7370–83.
Article CAS PubMed PubMed Central Google Scholar
Ahn J, Kim JY, Choi W, Kim C. High-resolution functional photoacoustic monitoring of vascular dynamics in human fingers. Photoacoustics. 2021;23: 100282.
Article PubMed PubMed Central Google Scholar
Bench C, Hauptmann A, Cox BT. Toward accurate quantitative photoacoustic imaging: learning vascular blood oxygen saturation in three dimensions. J Biomed Opt. 2020;25(8): 085003.
Article CAS PubMed PubMed Central Google Scholar
Bi R, Balasundaram G, Dinish U, Jeon S, Imai T, Pu Y, Ng LG, Kim C, Wan L, Olivo M. Functional vascular imaging by Photoacoustic Microscopy (PAM) and its biomedical application. In: Optical Biopsy XVII: Toward Real-Time Spectroscopic Imaging and Diagnosis: 2019: International Society for Optics and Photonics. 2019. p. 108730B.
Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307(5706):58–62.
Article CAS PubMed Google Scholar
Guo Y, et al. High-resolution whole-brain DCE-MRI using constrained reconstruction: Prospective clinical evaluation in brain tumor patients. Med Phys. 2016;43:2013.
Article PubMed PubMed Central Google Scholar
Yankeelov TE, Gore JC. Dynamic Contrast Enhanced Magnetic Resonance Imaging in Oncology: Theory, Data Acquisition, Analysis, and Examples. Curr Med Imaging Rev. 2009;3:91–107.
Article PubMed PubMed Central Google Scholar
Lim WH, Park JS, Park J, Choi SH. Assessing the reproducibility of high temporal and spatial resolution dynamic contrast-enhanced magnetic resonance imaging in patients with gliomas. Sci Rep. 2021;11:23217.
Article CAS PubMed PubMed Central Google Scholar
Chakhoyan A, Leu K, Pope WB, Cloughesy TF, Ellingson BM. Improved Spatiotemporal Resolution of Dynamic Susceptibility Contrast Perfusion MRI in Brain Tumors Using Simultaneous Multi-Slice Echo-Planar Imaging. AJNR Am J Neuroradiol. 2018;39:43–5.
Article CAS PubMed PubMed Central Google Scholar
Quarles CC, Bell LC, Stokes AM. Imaging vascular and hemodynamic features of the brain using dynamic susceptibility contrast and dynamic contrast enhanced MRI. Neuroimage. 2019;187:32–55.
Skinner JT, Moots PL, Ayers GD, Quarles CC. On the Use of DSC-MRI for Measuring Vascular Permeability. Am J Neuroradiol. 2016;37:80–7.
Article CAS PubMed PubMed Central Google Scholar
García-Figueiras R, et al. CT Perfusion in Oncologic Imaging: A Useful Tool? Am J Roentgenol. 2013;200:8–19.
Jain R. Perfusion CT Imaging of Brain Tumors: An Overview. Am J Neuroradiol. 2011;32:1570–7.
留言 (0)