Current trends in the characterization and monitoring of vascular response to cancer therapy

Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 1993;362(6423):841–4.

Article  CAS  PubMed  Google Scholar 

Jain RK, Duda DG, Clark JW, Loeffler JS. Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol. 2006;3(1):24–40.

Article  CAS  PubMed  Google Scholar 

Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, Lilenbaum R. Johnson DHJNEJoM: Paclitaxel–carboplatin alone or with bevacizumab for non–small-cell lung cancer. N Engl J Med. 2006;355(24):2542–50.

Article  CAS  PubMed  Google Scholar 

Reck M, Von Pawel J. Zatloukal Pv, Ramlau R, Gorbounova V, Hirsh V, Leighl N, Mezger J, Archer V, Moore NJAoo: Overall survival with cisplatin–gemcitabine and bevacizumab or placebo as first-line therapy for nonsquamous non-small-cell lung cancer: results from a randomised phase III trial (AVAiL). Ann Oncol. 2010;21(9):1804–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ. Jain RKJCr: Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res. 2004;64(11):3731–6.

Article  CAS  PubMed  Google Scholar 

Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Me. 2004;350(23):2335–42.

Article  CAS  Google Scholar 

Huang Y, Yuan J, Righi E, Kamoun WS, Ancukiewicz M, Nezivar J, Santosuosso M, Martin JD, Martin MR, Vianello F. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc Natl Acad Sci. 2012;109(43):17561–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, Jain RK. Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev. 2011;91(3):1071–121.

Article  CAS  PubMed  Google Scholar 

Duda DG. Molecular biomarkers of response to antiangiogenic therapy for cancer. Int Sch Res Not. 2012;2012(1):587259.

Google Scholar 

Fukumura D, Duda DG, Munn LL, Jain RK. Tumor microvasculature and microenvironment: novel insights through intravital imaging in pre-clinical models. Microcirculation. 2010;17(3):206–25.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang S, Liu J, Goh CC, Ng LG, Liu B. NIR-II-Excited Intravital Two-Photon Microscopy Distinguishes Deep Cerebral and Tumor Vasculatures with an Ultrabright NIR-I AIE Luminogen. Adv Mater. 2019;31(44): e1904447.

Article  PubMed  Google Scholar 

Kalpathy-Cramer J, Gerstner ER, Emblem KE, Andronesi O, Rosen B. Advanced magnetic resonance imaging of the physical processes in human glioblastoma. Cancer Res. 2014;74(17):4622–37.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kickingereder P, Sahm F, Wiestler B, Roethke M, Heiland S, Schlemmer H-P, Wick W, von Deimling A, Bendszus M, Radbruch A. Evaluation of microvascular permeability with dynamic contrast-enhanced MRI for the differentiation of primary CNS lymphoma and glioblastoma: radiologic-pathologic correlation. Am J Neuroradiol. 2014;35(8):1503–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Padhani AR, Khan AA. Diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) for monitoring anticancer therapy. Target Oncol. 2010;5(1):39–52.

Article  PubMed  Google Scholar 

Agrawal R, Li LKH, Nakhate V, Khandelwal N, Mahendradas P. Choroidal vascularity index in Vogt-Koyanagi-Harada disease: an EDI-OCT derived tool for monitoring disease progression. Translational vision science & technology. 2016;5(4):7–7.

Article  Google Scholar 

Clark DP, Ghaghada K, Moding EJ, Kirsch DG, Badea CT. In vivo characterization of tumor vasculature using iodine and gold nanoparticles and dual energy micro-CT. Phys Med Biol. 2013;58(6):1683.

Article  PubMed  PubMed Central  Google Scholar 

Cui Y, Liu H, Liang S, Zhang C, Cheng W, Hai W, Yin B, Wang D. The feasibility of 18F-AlF-NOTA-PRGD2 PET/CT for monitoring early response of Endostar antiangiogenic therapy in human nasopharyngeal carcinoma xenograft model compared with 18F-FDG. Oncotarget. 2016;7(19):27243.

Article  PubMed  PubMed Central  Google Scholar 

Valable S, Petit E, Roussel S, Marteau L, Toutain J, Divoux D, Sobrio F, Delamare J, Barre L, Bernaudin M. Complementary information from magnetic resonance imaging and (18)F-fluoromisonidazole positron emission tomography in the assessment of the response to an antiangiogenic treatment in a rat brain tumor model. Nucl Med Biol. 2011;38(6):781–93.

CAS  PubMed  Google Scholar 

Ho YJ, Chu SW, Liao EC, Fan CH, Chan HL, Wei KC, Yeh CK. Normalization of Tumor Vasculature by Oxygen Microbubbles with Ultrasound. Theranostics. 2019;9(24):7370–83.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahn J, Kim JY, Choi W, Kim C. High-resolution functional photoacoustic monitoring of vascular dynamics in human fingers. Photoacoustics. 2021;23: 100282.

Article  PubMed  PubMed Central  Google Scholar 

Bench C, Hauptmann A, Cox BT. Toward accurate quantitative photoacoustic imaging: learning vascular blood oxygen saturation in three dimensions. J Biomed Opt. 2020;25(8): 085003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bi R, Balasundaram G, Dinish U, Jeon S, Imai T, Pu Y, Ng LG, Kim C, Wan L, Olivo M. Functional vascular imaging by Photoacoustic Microscopy (PAM) and its biomedical application. In: Optical Biopsy XVII: Toward Real-Time Spectroscopic Imaging and Diagnosis: 2019: International Society for Optics and Photonics. 2019. p. 108730B.

Google Scholar 

Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307(5706):58–62.

Article  CAS  PubMed  Google Scholar 

Guo Y, et al. High-resolution whole-brain DCE-MRI using constrained reconstruction: Prospective clinical evaluation in brain tumor patients. Med Phys. 2016;43:2013.

Article  PubMed  PubMed Central  Google Scholar 

Yankeelov TE, Gore JC. Dynamic Contrast Enhanced Magnetic Resonance Imaging in Oncology: Theory, Data Acquisition, Analysis, and Examples. Curr Med Imaging Rev. 2009;3:91–107.

Article  PubMed  PubMed Central  Google Scholar 

Lim WH, Park JS, Park J, Choi SH. Assessing the reproducibility of high temporal and spatial resolution dynamic contrast-enhanced magnetic resonance imaging in patients with gliomas. Sci Rep. 2021;11:23217.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chakhoyan A, Leu K, Pope WB, Cloughesy TF, Ellingson BM. Improved Spatiotemporal Resolution of Dynamic Susceptibility Contrast Perfusion MRI in Brain Tumors Using Simultaneous Multi-Slice Echo-Planar Imaging. AJNR Am J Neuroradiol. 2018;39:43–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Quarles CC, Bell LC, Stokes AM. Imaging vascular and hemodynamic features of the brain using dynamic susceptibility contrast and dynamic contrast enhanced MRI. Neuroimage. 2019;187:32–55.

Article  PubMed  Google Scholar 

Skinner JT, Moots PL, Ayers GD, Quarles CC. On the Use of DSC-MRI for Measuring Vascular Permeability. Am J Neuroradiol. 2016;37:80–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

García-Figueiras R, et al. CT Perfusion in Oncologic Imaging: A Useful Tool? Am J Roentgenol. 2013;200:8–19.

Article  Google Scholar 

Jain R. Perfusion CT Imaging of Brain Tumors: An Overview. Am J Neuroradiol. 2011;32:1570–7.

Article 

留言 (0)

沒有登入
gif