Compatibility of the Entomopathogenic Fungus Metarhizium anisopliae (Ascomycota: Hypocreales) and the Predatory Coccinellid Menochilus sexmaculatus (Col.: Coccinellidae) for Controlling Aphis gossypii (Hem.: Aphididae)

Abbas M (2020) Interactions between entomopathogenic fungi and entomophagous insects. Adv Entomol 8(3):130–146. https://doi.org/10.4236/ae.2020.83010

Article  Google Scholar 

Abdel-Raheem M (2020) Isolation mass production and application of entomopathogenic fungi for insect pests control. In: El-Wakeil NM, Abu-hashim SM (Ed) Cottage industry of biocontrol agents and their applications, Springer, Cham, pp 231–251. https://doi.org/10.1007/978-3-030-33161-07

Abdollahdokht D, Gao Y, Faramarz S, Poustforoosh A, Abbasi M, Asadikaram G, Nematollahi MH (2022) Conventional agrochemicals towards nano-biopesticides: an overview on recent advances. Chem Biol Technol Agric 9(1):1–19. https://doi.org/10.1186/s40538-021-00281-0

Article  Google Scholar 

Al-Farhani H, Darsouei R, Kamali S, Moravvej G, Karimi J (2021) Pathogenicity of native isolates of entomopathogenic fungi Beauveria and Metharizium genera on Microcerotermes diversus (Blattodea: Termitidae) in the laboratory. Int J Trop Insect Sci 41:1493–1503. https://doi.org/10.1007/s42690-020-00347-w

Article  Google Scholar 

Alma CR, Goettel MS, Roitberg BD, Gillespie DR (2007) Combined effects of the entomopathogenic fungus, Paecilomyces fumosoroseus Apopka-97, and the generalist predator, Dicyphus hesperus, on whitefly populations. Biocontrol 52:669–681. https://doi.org/10.1007/s10526-006-9053-1

Article  Google Scholar 

Ansari MA, Shah FA, Butt TM (2010) The entomopathogenic nematode Steinernema kraussei and Metarhizium anisopliae work synergistically in controlling overwintering larvae of the black vine weevil, Otiorhynchus sulcatus, in strawberry growbags. Biocontrol Sci Technol 20:99–105

Article  Google Scholar 

Aqueel MA, Leather SR (2013) Virulence of Verticillium lecanii (Z.) against cereal aphids; does timing of infection affect the performance of parasitoids and predators? Pest Manag Sci 69:493–498

Article  CAS  PubMed  Google Scholar 

Atrchian H, Mahdian K, Izadi H (2022) Sub-lethal effects of Metarhizium anisopliae on the life table parameters of the predatory coccinellid Menochilus sexmaculatus Fabricius. J Appl Entomol 146(9):1136–1144. https://doi.org/10.1111/jen.13052

Article  CAS  Google Scholar 

Bayissa W, Ekesi S, Mohamed SA, Kaaya GP, Wagacha JM, Hanna R, Maniania NK (2016) Interactions among vegetable-infesting aphids, the fungal pathogen Metarhizium anisopliae (Ascomycota: Hypocreales) and the predatory coccinellid Cheilomenes lunata (Coleoptera: Coccinellidae). Biocontrol Sci Technol 26(2):274–290. https://doi.org/10.1080/09583157.2015.1099148

Article  Google Scholar 

Biondi A, Zappalà L, Stark JD, Desneux N (2013) Do biopesticides affect the demographic traits of a parasitoid wasp and its biocontrol services through sublethal effects? PLoS One 8:e76548. https://doi.org/10.1371/journal.pone.0076548

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blackman RK, Eastop VF (2017) Taxonomic issues. In: van Emden H, Harrington R. (Ed) Aphids as crop pests. Wallingford UK, CABI Publishing, pp 1–36. https://doi.org/10.1079/9781780647098.0001

Brodeur J (2012) Host specificity in biological control: insights from opportunistic pathogens. Evol Appl 5(5):470–480. https://doi.org/10.1111/j.1752-4571.2012.00273.x

Article  PubMed  PubMed Central  Google Scholar 

Bukero AA, Khatri KL, Memon KA, Soomro H, Shaikh HM, Rustamani FA (2019) Voracity and biomass consumption of Menochilus sexmaculatus Fab. On Aphid Species Sci Int (lahore) 31(1):87–89

Google Scholar 

Campolo O, Chiera E, Malacrinò A, Laudani F, Fontana A, Albanese GR, Palmeri V (2014) Acquisition and transmission of selected CTV isolates by Aphis gossypii. J Asia Pac Entomol 17(3):493–498. https://doi.org/10.1016/j.aspen.2014.04.008

Article  Google Scholar 

Chakraborty N, Mitra R, Pal S, Ganguly R, Acharya K, Minkina T, Sarkar A, Keswani C (2023) Biopesticide consumption in India: insights into the current trends. Agriculture 13(3):557. https://doi.org/10.3390/agriculture13030557

Article  CAS  Google Scholar 

Diaz BM, Fereres A (2005) Life table and population parameters of Nasonovia ribisnigr (Homoptera: Aphididae) at different constant temperatures. Environ Entomol 34(3):527–534. https://doi.org/10.1603/0046-225X-34.3.527

Article  Google Scholar 

Dixon AFG, Hemptinne JL, Kindlmann P (1997) Effectiveness of ladybirds as biological control agents: patterns and processes. Entomophaga 42(1–2):71–83

Google Scholar 

Doumbia M, Hemptinne JL, Dixon AFG (1998) Assessment of patch quality by ladybirds: role of larval tracks. Oecologia 113:197–201. https://doi.org/10.1007/s004420050368

Article  CAS  PubMed  Google Scholar 

Eilenberg J, Enkegaard A, Vestergaard S, Jensen B (2000) Biocontrol of pests on plant crops in Denmark: present status and future potential. Biocontrol Sci Technol 10(6):703–716. https://doi.org/10.1080/09583150020011681

Article  Google Scholar 

Ekesi S, Shah PA, Clark SJ, Pell JK (2005) Conservation biological control with the fungal pathogen Pandora neophidis: implications of aphid species, host plant and predator foraging. Agric for Entomol 7(1):21–30. https://doi.org/10.1111/j.1461-9555.2005.00239.x

Article  Google Scholar 

Fanning PD, Grieshop MJ, Isaacs R (2018) Efficacy of biopesticides on spotted wing drosophila, Drosophila suzukii Matsumura in fall red raspberries. J Appl Entomol 142(1–2):26–32. https://doi.org/10.1111/jen.12462

Article  CAS  Google Scholar 

Gange AC, Koricheva J, Currie AF, Jaber LR, Vidal S (2019) Meta-analysis of the role of entomopathogenic and unspecialized fungal endophytes as plant bodyguards. New Phytol 223:2002–2010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hatchett JH, Starks KJ, Webster JA (1987) Insect and mite pests of wheat, In: Heyne EG (Ed) In Wheat and wheat improvement. USA, American Society of Agronomy, pp 625–668. https://doi.org/10.2134/agronmonogr13.2ed.c34

Ibarra-Cortés KH, González-Hernández H, Guzmán- Franco AW, Ortega-Arenas LD, Villanueva-Jiménez JA, Robles-Bermúdez A (2018) Interactions between entomopathogenic fungi and Tamarixia radiata (Hymenoptera: Eulophidae) in Diaphorina citri (Hemiptera: Liviidae) populations under laboratory conditions. J Pest Sci 91:373–384

Article  Google Scholar 

Jampílek J, Kráľová K (2019) Nanobiopesticides in agriculture: state of the art and future opportunities. In: Koul O (Ed) Nano-biopesticides today and future perspectives. Amsterdam, Academic Press and Elsevier, pp 397–447. https://doi.org/10.1016/B978-0-12-815829-6.00018-8

Kaur T, Kaur M (2020) Integrated pest management: a paradigm for modern age. In: Kontogiannatos D, Kourti A, Mendes KF (Ed) Pests, weeds and diseases in agricultural crop and animal husbandry production. London, IntechOpen, pp https://doi.org/10.5772/intechopen.92283

Lu HL, St Leger RJ (2016) Insect immunity to entomopathogenic fungi. Adv Genet 94:251–285. https://doi.org/10.1016/bs.adgen.2015.11.002

Article  CAS  PubMed  Google Scholar 

Ma KS, Tang QL, Liang PZ, Li JH, Gao XW (2021) UDP-glycosyltransferases from the UGT344 family are involved in sulfoxaflor resistance in Aphis gossypii Glover. Insects 12(4):356. https://doi.org/10.3390/insects12040356

Article  PubMed  PubMed Central  Google Scholar 

Mantzoukas S, Eliopoulos PA (2020) Endophytic entomopathogenic fungi: a valuable biological control tool against plant pests. Appl Sci 10(1):360. https://doi.org/10.3390/app10010360

Article  Google Scholar 

Martins ICF, Silva RJ, Alencar JRDCC, Silva KP, Cividanes FJ, Duarte RT, Agostini LT, Polanczyk RA (2014) Interactions between the entomopathogenic fungi Beauveria bassiana (Ascomycota: Hypocreales) and the aphid parasitoid Diaeretiella rapae (Hymenoptera: Braconidae) on Myzus persicae (Hemiptera: Aphididae). J Econ Entomol 107:933–938

Article  Google Scholar 

McGuire AV, Northfield TD (2020) Tropical occurrence and agricultural importance of Beauveria bassiana and Metarhizium anisopliae. Front Sustain Food Syst 4:6. https://doi.org/10.3389/fsufs.2020.00006

Article  Google Scholar 

Meyling NV, Pell JK (2006) Detection and avoidance of an entomopathogenic fungus by a generalist insect predator. Ecol Entomol 31(2):162–171. https://doi.org/10.1111/j.0307-6946.2006.00781.x

Article  Google Scholar 

Mohamed GS (2019) The virulence of the entomopathogenic fungi on the predatory species, Cryptolaemus montrouzieri Mulsant (Coleoptera: Coccinellidae) under laboratory conditions. Egypt J Biol Pest Control 29:1–7. https://doi.org/10.1186/s41938-019-0146-4

Article  Google Scholar 

Mohammed AA (2018) Lecanicillium muscarium and Adalia bipunctata combination for the control of black bean aphid. Aphis Fabae Biocontrol 63(2):277–287. https://doi.org/10.1007/s10526-018-9868-6

Article  Google Scholar 

Mukherjee A, Debnath P, Ghosh SK, Medda PK (2020) Biological control of papaya aphid (Aphis gossypii Glover) using entomopathogenic fungi. Vegetos 33:1–10. https://doi.org/10.1007/s42535-019-00072-x

Article  Google Scholar 

Nawaz A, Razzaq F, Razzaq A, Gogi MD, Fernández-Grandon GM, Tayib M, Ayub MA, Sufyan M, Shahid MR, Qayyum MA, Naveed M (2022) Compatibility and synergistic interactions of fungi, Metarhizium anisopliae, and insecticide combinations against the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae). Sci Rep 12(1):1–10. https://doi.org/10.1038/s41598-022-08841-6

Article  CAS  Google Scholar 

Pell JK, Vandenberg JD (2002) Interactions among Diuraphis noxia, the fungal pathogen Paecilomyces fumosoroseus and the coccinellid Hippodamia convergens. Biocontrol Sci Technol 12(2):217–224. https://doi.org/10.1080/09583150120124478

Article  Google Scholar 

Quesada-Moraga E, Garrido-Jurado I, Yousef-Yousef M, González-Mas N (2022) Multitrophic interactions of entomopathogenic fungi in BioControl. Biocontrol 67(5):457–472. https://doi.org/10.1007/s10526-022-10163-5

留言 (0)

沒有登入
gif