Assessing the Impact of Climate Change on Argyrotaenia sphaleropa (Meyrick, 1909) Voltinism: Implications for Fruit Production in Southern Brazil

Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728

Article  Google Scholar 

Analytis S (1981) Relationship between temperature and development times in phytopathogenic fungus and in plant pests: a mathematical model. Agr Res 5:133–159

Google Scholar 

Biezanko CM, Ruffinelli A, Carbonell CS (1957) Lepidopteros del Uruguay – Lista anotada de espécies. Rev Fac Agro 46:3–152

Google Scholar 

Botton M, Bavaresco A, Garcia MS (2003) Ocorrência de Argyrotaenia sphaleropa (Meyrick) (Lepidoptera: Tortricidae) danificando pêssegos na Serra Gaúcha, Rio Grande do Sul. Neotrop Entomol 32:503–505

Article  Google Scholar 

Brière JF, Pracos P, le Roux AY, Pierre JS (1999) A novel rate model of temperature-dependent development for arthropods. Environ Entomol 28:22–29

Article  Google Scholar 

Burnham KP, Anderson DR (2002) Model selection and multimodel inference. Springer, Berlin, Germany

Google Scholar 

Campbell A, Frazer BD, Gilber N, Gutierrez AP, Mackauer M (1974) Temperature requirements of some aphids and their parasites. J Appl Ecol 11:419–423

Article  Google Scholar 

Damos PT, Savopoulou-Soultani M (2008) Temperature-dependent bionomics and modeling of Anarsia lineatella (Lepidoptera: Gelechiidae) in the laboratory. J Econ Entomol 5:1557–1567

Article  Google Scholar 

Denlinger DL, Yocum GD (1998) Physiology of heat sensitivity. In: Hallman GJ, Denlinger DL (eds) Temperature sensitivity in insects and application in integrated pest management. Westview Press, p 311

Google Scholar 

Deutsch CA, Tewksbury JJ, Tigchelaar M, Battisti DS, Merril SC, Huey RB, Naylor RL (2018) Increase in crop losses to insect pests in a warming climate. Science 361:6405

Article  Google Scholar 

Dillon ME, Wang G, Huey RB (2010) Global metabolic impacts of recent climate warming. Nature 467:704–706

Article  CAS  PubMed  Google Scholar 

ESRI (2012) ArcGIS desktop: release 10.1. Environmental Systems Research Institute, Redlands

Google Scholar 

Fan X, Duan Q, Shen C, Wu Y, Xing C (2020) Global surface air temperatures in CMIP6: historical performance and future changes. Environ Res Lett 15:104056

Article  Google Scholar 

IBGE. Sistema IBGE de Recuperação Automática – SIDRA. https://sidra.ibge.gov.br/tabela/1613. Accessed 27 February 2024

IPCC (2015) Intergovernmental Panel of Climate Change. Climate Change - Synthesis Report

Google Scholar 

Jacques J, Sampaio F, dos Santos HT, Marchioro CA (2019) Climate change and voltinism of Mythimna sequax: the location and choice of phenological models matter. Agr Forest Entomol 21:431–444

Article  Google Scholar 

Johnson DW, Barfield CS, Allen GE (1983) Temperature-dependent developmental model for the velvet bean caterpillar (Lepidoptera: Noctuidae). Environ Entomol 12:1657–1663

Article  Google Scholar 

Kontodimas DC, Eliopoulos PA, Stathas GJ, Economou LO (2004) Comparative temperature-dependent development of Nephus includens (Kirsch) and Nephus bisignatus (Boheman) (Coleoptera: Coccinellidae) preying on Planococcus citri (Risso) (Homoptera: Pseudococcidae): evaluation of a linear and various nonlinear models using specific criteria. Environ Entomol 33:1–11

Article  Google Scholar 

Lactin DJ, Holliday NJ, Johnson DL, Craigen R (1995) Improved rate model of temperature-dependent development by arthropods. Environ Entomol 24:68–75

Article  Google Scholar 

Lamb RJ, Gerbey GH, Atkinson GF (1984) Comparison of developmental rate curves applied to egg hatching data of Entomoscelis americana Brown (Coleoptera: Chrysomelidae). Environ Entomol 13:868–872

Article  Google Scholar 

Logan JA, Wolkind DJ, Hoyt SC (1976) Tanigoshi, L.K. An analytic model for description of temperature-dependent rate phenomena in arthropods. Environ Entomol 5:1133–1140

Article  Google Scholar 

Manfredi-Coimbra S, Garcia MS, Botton M (2001) Exigências térmicas e estimativa do número de gerações de Argytotaenia sphaleropa (Meyrick) (Lepidoptera: Tortricidae). Neotrop Entomol 30:553–557

Article  Google Scholar 

Marchioro CA, Krechemer FS, Foester LA (2017) Estimating the development rate of the tomato leaf miner, Tuta Absoluta (Lepidoptera: Gelechiidae), using linear and non-linear models. Pest Manag Sci 73:1486–1493

Article  CAS  PubMed  Google Scholar 

Morandi Filho WJ, Botton M, Grützmacher AD, Nondillo A (2006) Biologia comparada de Argyrotaenia sphaleropa (Meyrick, 1909) (Lepidoptera: Tortricidae) em dieta artificial contendo extratos vegetais. Arq Inst Biol 73:325–331

Article  Google Scholar 

Neves FW, Silva RA (2021) Primeiro registro de Argyrotaenia sphaleropa (Lepidoptera: Tortricidade) na cultura da soja no Estado do Mato Grosso. Braz J Anim Environ Res 4:60–66

Article  Google Scholar 

Nielsen AL, Hamilton GC, Matadha D (2008) Developmental rate estimation and life table analysis for Halyomorpha halys (Hemiptera: Pentatomidae). Environ Entomol 37:348–355

Article  PubMed  Google Scholar 

Quinn BK (2017) A critical review of the use and performance of different function types for modeling temperature-dependent development of arthropod larvae. J Therm Biol 63:65–77

Article  PubMed  Google Scholar 

Rebaudo F, Rabhi VB (2018) Modeling temperature-dependent development rate and phenology in insects: review of major developments, challenges, and future directions. Entomol Exp App 166:607–617

Article  Google Scholar 

Roy M, Brodeur J, Cloutier C (2002) Relationship between temperature and developmental rate of Stethorus punctillum (Coleoptera: Coccinellidae) and its prey Tetranychus mcdanieli (Acarina: Tetranychidae). Environ Entomol 31:177–187

Article  Google Scholar 

Sampaio F, Krechemer FS, Marchioro CA (2021) The hotter the better? Climate change and voltinism of Spodoptera eridania estimated with different methods. J Therm Biol 98:102946

Article  PubMed  Google Scholar 

Sampaio F, Santos HT, Marchioro CA (2022) Differences in thermal tolerances between two soybean pests may differently affect their voltinism under climate change. Agr Forest Entomol 24:380–389

Article  Google Scholar 

Sandhu HS, Nuessly GS, Webb SE, Cherry RH, Gilbert RA (2010) Temperature-dependent development of Elasmopalpus lignosellus (Lepidoptera: Pyralidae) on sugarcane under laboratory conditions. Environ Entomol 39:1012–1029

Article  PubMed  Google Scholar 

Santos HT, Marchioro CA (2021) Selection of models to describe the temperature-dependent development of Neoleucinodes elegantalis (Lepidoptera: Crambidae) and its application to predict the species voltinism under future climate conditions. Bull Entomol Res 111:476–484

Article  PubMed  Google Scholar 

Shi P, Ge F, Sun Y, Chen C (2011) A simple model for describing the effect of temperature on insect developmental rate. J Asia-Pac Entomol 14:15–20

Article  Google Scholar 

Srinivasa Rao M, Dammu M, Sengottaiyan V, Ongolu S, Biradar AK, Kondru VR, Karlapudi S, Bellapukonda MKR, Chitiprolu RRA, Cherukumalli SR (2016) Prediction of Helicoverpa armigera Hübner on pigeonpea during future climate change periods using MarkSim multimodel data. Agr Forest Meteorol 229:130–138

Google Scholar 

Srinivasa Rao M, Swathi P, Rao CAR, Rao KV, Raju BMK, Srinivas K, Manimanjari D, Maheswari M (2015) Model and scenario variations in predicted number of generations of Spodoptera litura Fab. on peanut during future climate change scenario. Plos ONE 10:e0116762

Article  PubMed Central  Google Scholar 

Systat Inc (2002) Table Curve 2D. Systat Software Inc, Chicago

Google Scholar 

Wrege MS, Caramori PH, Herter FG, Steinmetz S, Reisser Júnior C, Matzenauer R, Braga HJ (2010) Impact of global warming on the accumulated chilling hours in the southern region of Brazil. Acta Hort 872:31–40

Article  Google Scholar 

Xavier AC, King CW, Scanlon BR (2016) Daily gridded meteorological variables in Brazil (1980-2013). Int J Climatol 36:2644–2659

Article  Google Scholar 

Ziter C, Robinson EA, Newman JA (2012) Climate change and voltinism in Californian insect pest species: sensitivity to location, scenario, and climate model choice. Glob Change Biol 18:2771–2780

Article  Google Scholar 

留言 (0)

沒有登入
gif