Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728
Analytis S (1981) Relationship between temperature and development times in phytopathogenic fungus and in plant pests: a mathematical model. Agr Res 5:133–159
Biezanko CM, Ruffinelli A, Carbonell CS (1957) Lepidopteros del Uruguay – Lista anotada de espécies. Rev Fac Agro 46:3–152
Botton M, Bavaresco A, Garcia MS (2003) Ocorrência de Argyrotaenia sphaleropa (Meyrick) (Lepidoptera: Tortricidae) danificando pêssegos na Serra Gaúcha, Rio Grande do Sul. Neotrop Entomol 32:503–505
Brière JF, Pracos P, le Roux AY, Pierre JS (1999) A novel rate model of temperature-dependent development for arthropods. Environ Entomol 28:22–29
Burnham KP, Anderson DR (2002) Model selection and multimodel inference. Springer, Berlin, Germany
Campbell A, Frazer BD, Gilber N, Gutierrez AP, Mackauer M (1974) Temperature requirements of some aphids and their parasites. J Appl Ecol 11:419–423
Damos PT, Savopoulou-Soultani M (2008) Temperature-dependent bionomics and modeling of Anarsia lineatella (Lepidoptera: Gelechiidae) in the laboratory. J Econ Entomol 5:1557–1567
Denlinger DL, Yocum GD (1998) Physiology of heat sensitivity. In: Hallman GJ, Denlinger DL (eds) Temperature sensitivity in insects and application in integrated pest management. Westview Press, p 311
Deutsch CA, Tewksbury JJ, Tigchelaar M, Battisti DS, Merril SC, Huey RB, Naylor RL (2018) Increase in crop losses to insect pests in a warming climate. Science 361:6405
Dillon ME, Wang G, Huey RB (2010) Global metabolic impacts of recent climate warming. Nature 467:704–706
Article CAS PubMed Google Scholar
ESRI (2012) ArcGIS desktop: release 10.1. Environmental Systems Research Institute, Redlands
Fan X, Duan Q, Shen C, Wu Y, Xing C (2020) Global surface air temperatures in CMIP6: historical performance and future changes. Environ Res Lett 15:104056
IBGE. Sistema IBGE de Recuperação Automática – SIDRA. https://sidra.ibge.gov.br/tabela/1613. Accessed 27 February 2024
IPCC (2015) Intergovernmental Panel of Climate Change. Climate Change - Synthesis Report
Jacques J, Sampaio F, dos Santos HT, Marchioro CA (2019) Climate change and voltinism of Mythimna sequax: the location and choice of phenological models matter. Agr Forest Entomol 21:431–444
Johnson DW, Barfield CS, Allen GE (1983) Temperature-dependent developmental model for the velvet bean caterpillar (Lepidoptera: Noctuidae). Environ Entomol 12:1657–1663
Kontodimas DC, Eliopoulos PA, Stathas GJ, Economou LO (2004) Comparative temperature-dependent development of Nephus includens (Kirsch) and Nephus bisignatus (Boheman) (Coleoptera: Coccinellidae) preying on Planococcus citri (Risso) (Homoptera: Pseudococcidae): evaluation of a linear and various nonlinear models using specific criteria. Environ Entomol 33:1–11
Lactin DJ, Holliday NJ, Johnson DL, Craigen R (1995) Improved rate model of temperature-dependent development by arthropods. Environ Entomol 24:68–75
Lamb RJ, Gerbey GH, Atkinson GF (1984) Comparison of developmental rate curves applied to egg hatching data of Entomoscelis americana Brown (Coleoptera: Chrysomelidae). Environ Entomol 13:868–872
Logan JA, Wolkind DJ, Hoyt SC (1976) Tanigoshi, L.K. An analytic model for description of temperature-dependent rate phenomena in arthropods. Environ Entomol 5:1133–1140
Manfredi-Coimbra S, Garcia MS, Botton M (2001) Exigências térmicas e estimativa do número de gerações de Argytotaenia sphaleropa (Meyrick) (Lepidoptera: Tortricidae). Neotrop Entomol 30:553–557
Marchioro CA, Krechemer FS, Foester LA (2017) Estimating the development rate of the tomato leaf miner, Tuta Absoluta (Lepidoptera: Gelechiidae), using linear and non-linear models. Pest Manag Sci 73:1486–1493
Article CAS PubMed Google Scholar
Morandi Filho WJ, Botton M, Grützmacher AD, Nondillo A (2006) Biologia comparada de Argyrotaenia sphaleropa (Meyrick, 1909) (Lepidoptera: Tortricidae) em dieta artificial contendo extratos vegetais. Arq Inst Biol 73:325–331
Neves FW, Silva RA (2021) Primeiro registro de Argyrotaenia sphaleropa (Lepidoptera: Tortricidade) na cultura da soja no Estado do Mato Grosso. Braz J Anim Environ Res 4:60–66
Nielsen AL, Hamilton GC, Matadha D (2008) Developmental rate estimation and life table analysis for Halyomorpha halys (Hemiptera: Pentatomidae). Environ Entomol 37:348–355
Quinn BK (2017) A critical review of the use and performance of different function types for modeling temperature-dependent development of arthropod larvae. J Therm Biol 63:65–77
Rebaudo F, Rabhi VB (2018) Modeling temperature-dependent development rate and phenology in insects: review of major developments, challenges, and future directions. Entomol Exp App 166:607–617
Roy M, Brodeur J, Cloutier C (2002) Relationship between temperature and developmental rate of Stethorus punctillum (Coleoptera: Coccinellidae) and its prey Tetranychus mcdanieli (Acarina: Tetranychidae). Environ Entomol 31:177–187
Sampaio F, Krechemer FS, Marchioro CA (2021) The hotter the better? Climate change and voltinism of Spodoptera eridania estimated with different methods. J Therm Biol 98:102946
Sampaio F, Santos HT, Marchioro CA (2022) Differences in thermal tolerances between two soybean pests may differently affect their voltinism under climate change. Agr Forest Entomol 24:380–389
Sandhu HS, Nuessly GS, Webb SE, Cherry RH, Gilbert RA (2010) Temperature-dependent development of Elasmopalpus lignosellus (Lepidoptera: Pyralidae) on sugarcane under laboratory conditions. Environ Entomol 39:1012–1029
Santos HT, Marchioro CA (2021) Selection of models to describe the temperature-dependent development of Neoleucinodes elegantalis (Lepidoptera: Crambidae) and its application to predict the species voltinism under future climate conditions. Bull Entomol Res 111:476–484
Shi P, Ge F, Sun Y, Chen C (2011) A simple model for describing the effect of temperature on insect developmental rate. J Asia-Pac Entomol 14:15–20
Srinivasa Rao M, Dammu M, Sengottaiyan V, Ongolu S, Biradar AK, Kondru VR, Karlapudi S, Bellapukonda MKR, Chitiprolu RRA, Cherukumalli SR (2016) Prediction of Helicoverpa armigera Hübner on pigeonpea during future climate change periods using MarkSim multimodel data. Agr Forest Meteorol 229:130–138
Srinivasa Rao M, Swathi P, Rao CAR, Rao KV, Raju BMK, Srinivas K, Manimanjari D, Maheswari M (2015) Model and scenario variations in predicted number of generations of Spodoptera litura Fab. on peanut during future climate change scenario. Plos ONE 10:e0116762
Article PubMed Central Google Scholar
Systat Inc (2002) Table Curve 2D. Systat Software Inc, Chicago
Wrege MS, Caramori PH, Herter FG, Steinmetz S, Reisser Júnior C, Matzenauer R, Braga HJ (2010) Impact of global warming on the accumulated chilling hours in the southern region of Brazil. Acta Hort 872:31–40
Xavier AC, King CW, Scanlon BR (2016) Daily gridded meteorological variables in Brazil (1980-2013). Int J Climatol 36:2644–2659
Ziter C, Robinson EA, Newman JA (2012) Climate change and voltinism in Californian insect pest species: sensitivity to location, scenario, and climate model choice. Glob Change Biol 18:2771–2780
留言 (0)