Renal denervation for hypertensive heart disease and atrial fibrillation

Hirooka Y. Sympathetic activation in hypertension: importance of the central nervous system. Am J Hypertens. 2020;33:914–26.

Article  CAS  PubMed  Google Scholar 

Grassi G, Mancia G, Esler M. Central and peripheral sympathetic activation in heart failure. Cardiovasc Res. 2022;118:1857–71.

Article  CAS  PubMed  Google Scholar 

Shivkumar K, Ajijola OA, Anand I, Armour JA, Chen PS, Esler M, et al. Clinical neurocardiology defining the value of neuroscience-based cardiovascular therapeutics. J Physiol. 2016;594:3911–54.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brandt MC, Mahfoud F, Reda S, Schirmer SH, Erdmann E, Böhm M, et al. Renal sympathetic denervation reduces left ventricular hypertrophy and improves cardiac function in patients with resistant hypertension. J Am Coll Cardiol. 2012;59:901–9.

Article  PubMed  Google Scholar 

Mahfoud F, Urban D, Teller D, Linz D, Stawowy P, Hassel JH, et al. Effect of renal denervation on left ventricular mass and function in patients with resistant hypertension: data from a multi-centre cardiovascular magnetic resonance imaging trial. Eur Heart J. 2014;35:2224–31b.

Article  PubMed  Google Scholar 

Tahir E, Koops A, Warncke ML, Starekova J, Neumann JT, Waldeyer C, et al. Effect of renal denervation procedure on left ventricular mass, myocardial strain and diastolic function by CMR on a 12-month follow-up. Jpn J Radio. 2019;37:642–50.

Article  CAS  Google Scholar 

Heradien M, Mahfoud F, Greyling C, Lauder L, van der Bijl P, Hettrick DA, et al. Renal denervation prevents subclinical atrial fibrillation in patients with hypertensive heart disease: randomized, sham-controlled trial. Heart Rhythm. 2022. https://doi.org/10.1016/j.hrthm.2022.06.031.

Watanabe H, Iwanaga Y, Miyaji Y, Yamamoto H, Miyazaki S. Renal denervation mitigates cardiac remodeling and renal damage in Dahl rats: a comparison with beta-receptor blockade. Hypertens Res. 2016;39:217–26.

Article  CAS  PubMed  Google Scholar 

Heradien M, Mahfoud F, Greyling C, Lauder L, van der Bijl P, Hettrick DA, et al. Renal denervation prevents subclinical atrial fibrillation in patients with hypertensive heart disease: randomized, sham-controlled trial. Heart Rhythm. 2022;19:1765–73.

Article  PubMed  Google Scholar 

Koren MJ, Devereux RB, Casale PN, Savage DD, Laragh JH. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med. 1991;114:345–52.

Article  CAS  PubMed  Google Scholar 

Pierdomenico SD, Cuccurullo F. Risk reduction after regression of echocardiographic left ventricular hypertrophy in hypertension: a meta-analysis. Am J Hypertens. 2010;23:876–81.

Article  PubMed  Google Scholar 

Kordalis A, Tsiachris D, Pietri P, Tsioufis C, Stefanadis C. Regression of organ damage following renal denervation in resistant hypertension: a meta-analysis. J Hypertens. 2018;36:1614–21.

Article  CAS  PubMed  Google Scholar 

Wang S, Yang S, Zhao X, Shi J. Effects of renal denervation on cardiac structural and functional abnormalities in patients with resistant hypertension or diastolic dysfunction. Sci Rep. 2018;8:1172.

Article  PubMed  PubMed Central  Google Scholar 

Xie L, Li Y, Luo S, Huang B Impact of renal denervation on cardiac remodeling in resistant hypertension: a meta‐analysis. Clin Cardiol. 2024;47:e24222.

Bazoukis G, Thomopoulos C, Tse G, Vassiliou VS, Liu T, Dimitriadis K, et al. Impact of renal sympathetic denervation on cardiac magnetic resonance-derived cardiac indices in hypertensive patients—a meta-analysis. J Cardiol. 2021;78:314–21.

Article  PubMed  Google Scholar 

Schlaich MP, Kaye DM, Lambert E, Sommerville M, Socratous F, Esler MD. Relation between cardiac sympathetic activity and hypertensive left ventricular hypertrophy. Circulation. 2003;108:560–5.

Article  PubMed  Google Scholar 

Tsoporis J, Leenen FH. Effects of arterial vasodilators on cardiac hypertrophy and sympathetic activity in rats. Hypertension. 1988;11:376–86.

Article  CAS  PubMed  Google Scholar 

Shinohara K, Kishi T, Hirooka Y, Sunagawa K. Circulating angiotensin II deteriorates left ventricular function with sympathoexcitation via brain angiotensin II receptor. Physiol Rep. 2015;3:e12514.

Article  PubMed  PubMed Central  Google Scholar 

Shibata R, Shinohara K, Ikeda S, Iyonaga T, Matsuura T, Kashihara S, et al. Transient receptor potential vanilloid 1-expressing cardiac afferent nerves may contribute to cardiac hypertrophy in accompany with an increased expression of brain-derived neurotrophic factor within nucleus tractus solitarius in a pressure overload model. Clin Exp Hypertens. 2022;44:249–57.

Article  CAS  PubMed  Google Scholar 

Wachtell K, Smith G, Gerdts E, Dahlöf B, Nieminen MS, Papademetriou V, et al. Left ventricular filling patterns in patients with systemic hypertension and left ventricular hypertrophy (the LIFE study). Am J Cardiol. 2000;85:466–72.

Article  CAS  PubMed  Google Scholar 

Benjamin EJ, Levy D, Vaziri SM, D’Agostino RB, Belanger AJ, Wolf PA. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. Jama. 1994;271:840–4.

Article  CAS  PubMed  Google Scholar 

de Vos CB, Pisters R, Nieuwlaat R, Prins MH, Tieleman RG, Coelen RJ, et al. Progression from paroxysmal to persistent atrial fibrillation clinical correlates and prognosis. J Am Coll Cardiol. 2010;55:725–31.

Article  PubMed  Google Scholar 

Hanna P, Buch E, Stavrakis S, Meyer C, Tompkins JD, Ardell JL, et al. Neuroscientific therapies for atrial fibrillation. Cardiovasc Res. 2021;117:1732–45.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nawar K, Mohammad A, Johns EJ, Abdulla MH. Renal denervation for atrial fibrillation: a comprehensive updated systematic review and meta-analysis. J Hum Hypertens. 2023;37:89–90.

Article  PubMed  Google Scholar 

Steinberg JS, Shabanov V, Ponomarev D, Losik D, Ivanickiy E, Kropotkin E, et al. Effect of renal denervation and catheter ablation vs catheter ablation alone on atrial fibrillation recurrence among patients with paroxysmal atrial fibrillation and hypertension: The ERADICATE-AF randomized clinical trial. JAMA. 2020;323:248–55.

Article  PubMed  PubMed Central  Google Scholar 

Kagawa Y, Fujii E, Fujita S, Ito M. Association between left atrial reverse remodeling and maintenance of sinus rhythm after catheter ablation of persistent atrial fibrillation. Heart Vessels. 2020;35:239–45.

Article  PubMed  Google Scholar 

Rettmann ME, Holmes DR 3rd, Monahan KH, Breen JF, Bahnson TD, Mark DB, et al. Treatment-related changes in left atrial structure in atrial fibrillation: findings from the CABANA imaging substudy. Circ Arrhythm Electrophysiol. 2021;14:e008540.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Osborn JW, Tyshynsky R, Vulchanova L. Function of renal nerves in kidney physiology and pathophysiology. Annu Rev Physiol. 2021;83:429–50.

Article  CAS  PubMed  Google Scholar 

Katsurada K, Shinohara K, Aoki J, Nanto S, Kario K. Renal denervation: basic and clinical evidence. Hypertens Res. 2022;45:198–209.

Article  PubMed  Google Scholar 

Katsuki M, Shinohara K, Kinugawa S, Hirooka Y. The effects of renal denervation on blood pressure, cardiac hypertrophy, and sympathetic activity during the established phase of hypertension in spontaneously hypertensive rats. Hypertens Res. 2024. https://doi.org/10.1038/s41440-024-01596-9.

Lauar MR, Evans LC, Van Helden D, Fink GD, Banek CT, Menani JV, et al. Renal and hypothalamic inflammation in renovascular hypertension: role of afferent renal nerves. Am J Physiol Regul Integr Comp Physiol. 2023;325:R411–22.

Article  CAS  PubMed  Google Scholar 

Wu L-L, Zhang Y, Li X-Z, Du X-L, Gao Y, Wang J-X, et al. Impact of selective renal afferent denervation on oxidative stress and vascular remodeling in spontaneously hypertensive rats. Antioxidants. 2022;11:1003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Asirvatham-Jeyaraj N, Gauthier MM, Banek CT, Ramesh A, Garver H, Fink GD, et al. Renal denervation and celiac ganglionectomy decrease mean arterial pressure similarly in genetically hypertensive schlager (BPH/2J) mice. Hypertension. 2021;77:519–28.

Article  CAS 

留言 (0)

沒有登入
gif