Abdullah, Y.I., J.S. Schuman, R. Shabsigh, A. Caplan, and L.A. Al-Aswad. 2021. Ethics of artificial intelligence in medicine and ophthalmology. Asia-Pacific Journal of Ophthalmology 10 (3): 289–298. https://doi.org/10.1097/apo.0000000000000397.
Abràmoff, M.D., D. Tobey, and D.S. Char. 2020. Lessons learned about autonomous AI: Finding a safe, efficacious, and ethical path through the development process. American Journal of Ophthalmology 214: 134–142. https://doi.org/10.1016/j.ajo.2020.02.022.
Afnan, M.A.M., Y. Liu, V. Conitzer, C. Rudin, A. Mishra, J. Savulescu, and M. Afnan. 2021. Interpretable, not black-box, artificial intelligence should be used for embryo selection. Human Reproduction Open 2021 (4): hoab040. https://doi.org/10.1093/hropen/hoab040.
Akinci D’Antonoli, T. 2020. Ethical considerations for artificial intelligence: An overview of the current radiology landscape. Diagnostic and Interventional Radiology 26 (5): 504–511. https://doi.org/10.5152/dir.2020.19279.
Alami, H., P. Lehoux, Y. Auclair, M. de Guise, M.P. Gagnon, J. Shaw, D. Roy, R. Fleet, M.A. Ag Ahmed, and J.P. Fortin. 2020. Artificial intelligence and health technology assessment: Anticipating a new level of complexity. Journal of Medical Internet Research 22 (7): e17707. https://doi.org/10.2196/17707.
Arrieta, A.B., N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado, S. García, S. Gil-López, D. Molina, and Richard Benjamins. 2020. Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion 58: 82–115. https://doi.org/10.1016/j.inffus.2019.12.012.
Arvaniti, E., K.S. Fricker, M. Moret, N. Rupp, T. Hermanns, C. Fankhauser, N. Wey, P.J. Wild, J.H. Rueschoff, and M. Claassen. 2018. Automated Gleason grading of prostate cancer tissue microarrays via deep learning. Scientific Reports 8 (1): 12054. https://doi.org/10.1038/s41598-018-30535-1.
Baird, A., and B. Schuller. 2020. Considerations for a more ethical approach to data in AI: On data representation and infrastructure. Frontiers in Big Data 3: 25. https://doi.org/10.3389/fdata.2020.00025.
Balthazar, P., P. Harri, A. Prater, and N.M. Safdar. 2018. Protecting your patients’ interests in the era of big data, artificial intelligence, and predictive analytics. Journal of the American College of Radiology 15 (3 Pt B): 580–86. https://doi.org/10.1016/j.jacr.2017.11.035.
Barfield, Woodrow. 2018. Liability for autonomous and artificially intelligent robots. Paladyn, Journal of Behavioral Robotics 9 (1): 193–203. https://doi.org/10.1515/pjbr-2018-0018.
Basu, T., S. Engel-Wolf, and O. Menzer. 2020. The ethics of machine learning in medical sciences: Where do we stand today? Indian Journal of Dermatology 65 (5): 358–364. https://doi.org/10.4103/ijd.IJD_419_20.
Belani, S., G.C. Tiarks, N. Mookerjee, and V. Rajput. 2021. ‘I agree to disagree’: Comparative ethical and legal analysis of big data and genomics for privacy, consent, and ownership. Cureus 13 (10): e18736. https://doi.org/10.7759/cureus.18736.
Bhattacharya, S., M.M. Hossain, R. Juyal, N. Sharma, K.B. Pradhan, and A. Singh. 2021. Role of public health ethics for responsible use of artificial intelligence technologies. Indian Journal of Community Medicine 46 (2): 178–181. https://doi.org/10.4103/ijcm.IJCM_62_20.
Bleher, H., and M. Braun. 2022. Diffused responsibility: Attributions of responsibility in the use of AI-driven clinical decision support systems. AI and Ethics 2: 747–761. https://doi.org/10.1007/s43681-022-00135-x.
Boers, S.N., K.R. Jongsma, F. Lucivero, J. Aardoom, F.L. Büchner, M. de Vries, P. Honkoop, et al. 2020. SERIES: EHealth in primary care. Part 2: Exploring the ethical implications of its application in primary care practice. The European Journal of General Practice 26 (1): 26–32. https://doi.org/10.1080/13814788.2019.1678958.
Brall, C., P. Schroder-Back, and E. Maeckelberghe. 2019. Ethical aspects of digital health from a justice point of view. European Journal of Public Health 29 (Supplement_3): 18–22. https://doi.org/10.1093/eurpub/ckz167.
Braun, M., P. Hummel, S. Beck, and P. Dabrock. 2020. Primer on an ethics of AI-based decision support systems in the clinic. Journal of Medical Ethics 47 (12): e3. https://doi.org/10.1136/medethics-2019-105860.
Brill, S.B., K.O. Moss, and L. Prater. 2019. Transformation of the doctor-patient relationship: Big data, accountable care, and predictive health analytics. HEC Forum 31 (4): 261–282. https://doi.org/10.1007/s10730-019-09377-5.
Buruk, B., P.E. Ekmekci, and B. Arda. 2020. A critical perspective on guidelines for responsible and trustworthy artificial intelligence. Medicine, Health Care & Philosophy 23 (3): 387–399. https://doi.org/10.1007/s11019-020-09948-1.
Burwell, S., M. Sample, and E. Racine. 2017. Ethical aspects of brain computer interfaces: A scoping review. BMC Medical Ethics 18 (1): 60. https://doi.org/10.1186/s12910-017-0220-y.
Busuioc, M. 2021. Accountable artificial intelligence: Holding algorithms to account. Public Administration Review 81 (5): 825–836. https://doi.org/10.1111/puar.13293.
Byrne, M.D. 2021. Reducing bias in healthcare artificial intelligence. Journal of Perianesthesia Nursing 36 (3): 313–316. https://doi.org/10.1016/j.jopan.2021.03.009.
Cahill, R.A., P. Mac Aonghusa, and N. Mortensen. 2021. The age of surgical operative video big data—My bicycle or our park? Surgeon 20 (3): e7-e12. https://doi.org/10.1016/j.surge.2021.03.006.
Carter, S.M., W. Rogers, K.T. Win, H. Frazer, B. Richards, and N. Houssami. 2020. The ethical, legal and social implications of using artificial intelligence systems in breast cancer care. Breast 49: 25–32. https://doi.org/10.1016/j.breast.2019.10.001.
Casà, C., C. Marotta, M. Di Pumpo, A. Cozzolino, A. D’Aviero, E.M. Frisicale, A. Silenzi, F. Gabbrielli, L. Bertinato, and S. Brusaferro. 2021. COVID-19 and digital competencies among young physicians: Are we (really) ready for the new era? A national survey of the Italian young medical doctors association. Annali Dell Istituto Superiore Di Sanita 57 (1): 1–6. https://doi.org/10.4415/ann_21_01_01.
Cath, C. 2018. Governing artificial intelligence: Ethical, legal and technical opportunities and challenges. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376: 2133. https://doi.org/10.1098/rsta.2018.0080.
Cath, C., S. Wachter, B. Mittelstadt, M. Taddeo, and L. Floridi. 2018. Artificial intelligence and the ‘good society’: The US, EU, and UK approach. Science and Engineering Ethics 24 (2): 505–528. https://doi.org/10.1007/s11948-017-9901-7.
Caudai, C., A. Galizia, F. Geraci, L. Le Pera, V. Morea, E. Salerno, A. Via, and T. Colombo. 2021. AI applications in functional genomics. Computational and Structural Biotechnology Journal 19: 5762–5790. https://doi.org/10.1016/j.csbj.2021.10.009.
Cawthorne, D., and A. Robbins-van Wynsberghe. 2020. An ethical framework for the design, development, implementation, and assessment of drones used in public healthcare. Science and Engineering Ethics 26 (5): 2867–2891. https://doi.org/10.1007/s11948-020-00233-1.
Char, D.S., N.H. Shah, and D. Magnus. 2018. Implementing machine learning in health care—Addressing ethical challenges. New England Journal of Medicine 378 (11): 981–983. https://doi.org/10.1056/NEJMp1714229.
Char, D., M. Abràmoff, and C. Feudtner. 2020a. A framework to evaluate ethical considerations with ML-HCA applications—Valuable, even necessary, but never comprehensive. American Journal of Bioethics 20 (11): W6-w10. https://doi.org/10.1080/15265161.2020.1827695.
Char, D.S., M.D. Abràmoff, and C. Feudtner. 2020b. Identifying ethical considerations for machine learning healthcare applications. American Journal of Bioethics 20 (11): 7–17. https://doi.org/10.1080/15265161.2020.1819469.
Chauhan, C., and R.R. Gullapalli. 2021. Ethics of AI in pathology: Current paradigms and emerging issues. American Journal of Pathology 191 (10): 1673–1683. https://doi.org/10.1016/j.ajpath.2021.06.011.
Chin-Yee, B., and R. Upshur. 2019. Three problems with big data and artificial intelligence in medicine. Perspectives in Biology and Medicine 62 (2): 237–256. https://doi.org/10.1353/pbm.2019.0012.
Constantinescu, M., C. Voinea, R. Uszkai, and C. Vică. 2021. Understanding responsibility in responsible AI. Dianoetic virtues and the hard problem of context. Ethics and Information Technology 23: 803–814. https://doi.org/10.1007/s10676-021-09616-9.
Coppola, F., L. Faggioni, M. Gabelloni, F. De Vietro, V. Mendola, A. Cattabriga, M.A. Cocozza, et al. 2021. Human, all too human? An all-around appraisal of the ‘artificial intelligence revolution’ in medical imaging. Frontiers in Psychology 12: 710982. https://doi.org/10.3389/fpsyg.2021.710982.
Crigger, E., K. Reinbold, C. Hanson, A. Kao, K. Blake, and M. Irons. 2022. Trustworthy augmented intelligence in health care. Journal of Medical Systems 46 (2): 12. https://doi.org/10.1007/s10916-021-01790-z.
Da Silva, Michael. 2023. Explainability, public reason, and medical artificial intelligence. Ethical Theory and Moral Practice 26: 743–762. https://doi.org/10.1007/s10677-023-10390-4.
Davenport, T., and R. Kalakota. 2019. The potential for artificial intelligence in healthcare. Future Healthcare Journal 6 (2): 94–98. https://doi.org/10.7861/futurehosp.6-2-94.
留言 (0)