Mechanistic insights into G-protein coupling with an agonist-bound G-protein-coupled receptor

Lefkowitz, R. J. Seven transmembrane receptors: something old, something new. Acta Physiol. 190, 9–19 (2007).

Article  CAS  Google Scholar 

Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19–34 (2017).

Article  CAS  PubMed  Google Scholar 

Farrens, D. L., Altenbach, C., Yang, K., Hubbell, W. L. & Khorana, H. G. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274, 768–770 (1996).

Article  CAS  PubMed  Google Scholar 

Scheerer, P. et al. Crystal structure of opsin in its G-protein-interacting conformation. Nature 455, 497–502 (2008).

Article  CAS  PubMed  Google Scholar 

Rasmussen, S. G. F. et al. Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature 477, 549–557 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Flock, T. et al. Universal allosteric mechanism for Gα activation by GPCRs. Nature 524, 173–179 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hauser, A. S. et al. Common coupling map advances GPCR-G protein selectivity. eLife 11, e74107 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

García-Nafría, J. & Tate, C. G. Structure determination of GPCRs: cryo-EM compared with X-ray crystallography. Biochem. Soc. Trans. 49, 2345 (2021).

Article  PubMed  PubMed Central  Google Scholar 

García-Nafría, J. & Tate, C. G. Cryo-EM structures of GPCRs coupled to Gs, Gi and Go. Mol. Cell. Endocrinol. 488, 1–13 (2019).

Article  PubMed  Google Scholar 

Du, Y. et al. Assembly of a GPCR–G protein complex. Cell 177, 1232–1242.e11 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heck, M. & Hofmann, K. P. Maximal rate and nucleotide dependence of rhodopsin-catalyzed transducin activation: initial rate analysis based on a double displacement mechanism. J. Biol. Chem. 276, 10000–10009 (2001).

Article  CAS  PubMed  Google Scholar 

Scheerer, P. et al. Structural and kinetic modeling of an activating helix switch in the rhodopsin–transducin interface. Proc. Natl Acad. Sci. 106, 10660–10665 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chung, K. Y. et al. Conformational changes in the G protein Gs induced by the β2 adrenergic receptor. Nature 477, 611–615 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gregorio, G. G. et al. Single-molecule analysis of ligand efficacy in β2AR–G-protein activation. Nature 547, 68–73 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Okashah, N. et al. Agonist-induced formation of unproductive receptor-G12 complexes. Proc. Natl Acad. Sci. USA 117, 21723–21730 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, X. et al. Structural Insights into the process of GPCR–G protein complex formation. Cell 177, 1243–1251.e12 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mahoney, J. P. & Sunahara, R. K. Mechanistic insights into GPCR–G protein interactions. Curr. Opin. Struct. Biol. 41, 247–254 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jang, W., Lu, S., Wu, G. & Lambert, N. A. The role of G protein confirmation in receptor-G protein selectivity. Nat. Chem. Biol. 19, 687–694 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsutsumi, N. et al. Atypical structural snapshots of human cytomegalovirus GPCR interactions with host G proteins. Sci. Adv. 8, 5442 (2022).

Article  Google Scholar 

Huang, S. K. et al. Delineating the conformational landscape of the adenosine A2A receptor during G protein coupling. Cell 184, 1884–1894.e14 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang, S. K. et al. Mapping the conformation landscape of the stimulatory heterotrimeric G protein. Nat. Struct. Mol. Biol. 30, 502–511 (2023).

Article  CAS  PubMed  Google Scholar 

Sadler, F. et al. Autoregulation of GPCR signalling through the third intracellular loop A FRET-based approach to probe ICL3 conformation. Nature 615, 734–741 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fleetwood, O., Carlsson, J. & Delemotte, L. Identification of ligand-specific G protein-coupled receptor states and prediction of downstream efficacy via data-driven modeling. eLife 10, e60715 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Panel, N. et al. Design of drug efficacy guided by free energy simulations of the β2-adrenoceptor. Angew. Chem. Int. Ed. Engl. 62, e202218959 (2023).

Article  CAS  PubMed  Google Scholar 

Robinson, G. A., Butcher, R. W. & Sutherland, E. W. Cyclic AMP. Ann. Rev. Biochem. 37, 149–174 (1968).

Article  Google Scholar 

Haga, T. et al. Adenylate cyclase permanently uncoupled from hormone receptors in a novel variant of S49 mouse lymphoma cells. Proc. Natl Acad. Sci. USA 74, 2016–2020 (1977).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Manglik, A., Kobilka, B. K. & Steyaert, J. Nanobodies to study G protein-coupled receptor structure and function. Annu. Rev. Pharmacol. Toxicol. 57, 19–37 (2017).

Article  CAS  PubMed  Google Scholar 

Conklin, B. R., Farfel, Z., Lustig, K. D., Julius, D. & Bourne, H. R. Substitution of three amino acids switches receptor specificity of Gqα to that of Giα. Nature 363, 274–276 (1993).

Article  CAS  PubMed  Google Scholar 

Flock, T. et al. Selectivity determinants of GPCR–G-protein binding. Nature 545, 317–322 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rose, A. S. et al. Position of transmembrane helix 6 determines receptor G protein coupling specificity. J. Am. Chem. Soc. 136, 11244–11247 (2014).

Article  CAS  PubMed  Google Scholar 

Selçuk, B. & Adebali, O. Common and selective signal transduction mechanisms of GPCRs. Prog. Mol. Biol. Transl. Sci. 195, 89–100 (2023).

留言 (0)

沒有登入
gif