A transfer learning enabled approach for ocular disease detection and classification

Li C, Ye J, He J, Wang S, Qiao Y, Gu L. Dense correlation network for automated multi-label ocular disease detection with paired color fundus photographs. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1–4 (2020). IEEE

Dipu NM, Shohan SA, Salam K. Ocular disease detection using advanced neural network based classification algorithms. Asian J Converg Technol ISSN-2350-1146 7(2):91–99 (2021)

Li N, Li T, Hu C, Wang K, Kang H. A benchmark of ocular disease intelligent recognition: One shot for multi-disease detection. In: Benchmarking, Measuring, and Optimizing: Third BenchCouncil International Symposium, Bench 2020, Virtual Event, November 15–16, 2020, Revised Selected Papers 3, pp. 177–193 (2021). Springer

Mishra S, Dash A, Jena L. Use of deep learning for disease detection and diagnosis. Bio-inspired Neurocomput. 2021. https://doi.org/10.1007/978-981-15-5495-7_10.

Article  Google Scholar 

Majid M, Gulzar Y, Ayoub S, Khan F, Reegu FA, Mir MS, Jaziri W, Soomro AB. Using ensemble learning and advanced data mining techniques to improve the diagnosis of chronic kidney disease. Int J Adv Comput Sci Appl. 2023;14(10):470–80.

Google Scholar 

Jyothi P, Singh AR. Deep learning models and traditional automated techniques for brain tumor segmentation in mri: a review. Artif intell Rev. 2023;56(4):2923–69.

Article  Google Scholar 

Khan F, Ayoub S, Gulzar Y, Majid M, Reegu FA, Mir MS, Soomro AB, Elwasila O. Mri-based effective ensemble frameworks for predicting human brain tumor. J Imaging. 2023;9(8):163.

Article  Google Scholar 

Cheung CY, Tang F, Ting DSW, Tan GSW, Wong TY. Artificial intelligence in diabetic eye disease screening. Asia-Pac J Ophthalmol. 2019;8(2):158–64.

Google Scholar 

Balyen L, Peto T. Promising artificial intelligence-machine learning-deep learning algorithms in ophthalmology. Asia-Pac J Ophthalmol. 2019;8(3):264–72.

Google Scholar 

Serte S, Serener A, Al-Turjman F. Deep learning in medical imaging: a brief review. Trans Emerg Telecommun Technol. 2022;33(10):4080.

Article  Google Scholar 

Beede E, Baylor E, Hersch F, Iurchenko A, Wilcox L, Ruamviboonsuk P, Vardoulakis LM. A human-centered evaluation of a deep learning system deployed in clinics for the detection of diabetic retinopathy. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2020)

Salem H, Negm KR, Shams MY, Elzeki OM. Recognition of ocular disease based optimized vgg-net models. In: Medical Informatics and Bioimaging Using Artificial Intelligence: Challenges, Issues, Innovations and Recent Developments, pp. 93–111. Springer (2021)

Saeed M, Ahmed N, Mehmood A, Aftab M, Amin R, Kamal S. Sentiment analysis for covid-19 vaccine popularity. KSII Trans Internet Inf Syst. 2023;17(5):1377–93.

Google Scholar 

Li T, Bo W, Hu C, Kang H, Liu H, Wang K, Fu H. Applications of deep learning in fundus images: a review. Med Image Anal. 2021;69:101971.

Article  Google Scholar 

Juneja M, Singh S, Agarwal N, Bali S, Gupta S, Thakur N, Jindal P. Automated detection of glaucoma using deep learning convolution network (g-net). Multimed Tools Appl. 2020;79:15531–53.

Article  Google Scholar 

Perdomo Charry OJ, González FA. A systematic review of deep learning methods applied to ocular images. Ciencia e Ingenieria Neogranadina. 2020;30(1):9–26.

Article  Google Scholar 

Yang Y, Li R, Lin D, Zhang X, Li W, Wang J, Guo C, Li J, Chen C, Zhu Y, et al. Automatic identification of myopia based on ocular appearance images using deep learning. Ann Transl Med. 2020;8(11):705.

Article  Google Scholar 

Zhai Z-M, Moradi M, Kong L-W, Glaz B, Haile M, Lai Y-C. Model-free tracking control of complex dynamical trajectories with machine learning. Nat Commun. 2023;14(1):5698.

Article  Google Scholar 

Zhai Z-M, Kong L-W, Lai Y-C. Emergence of a resonance in machine learning. Phys Rev Res. 2023;5(3):033127.

Article  Google Scholar 

Malik S, Kanwal N, Asghar MN, Sadiq MAA, Karamat I, Fleury M. Data driven approach for eye disease classification with machine learning. Appl Sci. 2019;9(14):2789.

Article  Google Scholar 

Guergueb T, Akhloufi MA. Ocular diseases detection using recent deep learning techniques. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 3336–3339 (2021). IEEE

Khan MS, Tafshir N, Alam KN, Dhruba AR, Khan MM, Albraikan AA, Almalki FA, et al. Deep learning for ocular disease recognition: an inner-class balance. Comput Intell Neurosci. 2022. https://doi.org/10.1155/2022/5007111.

Article  Google Scholar 

Arslan G, Erdaş ÇB. Detection of cataract, diabetic retinopathy and glaucoma eye diseases with deep learning approach. Intell Methods Eng Sci. 2023;2(2):42–7.

Google Scholar 

Kalyani B, Hemavathi U, Meena K, Deepapriya B, Syed S. Smart cataract detection system with bidirectional lstm. Soft Comput. 2023;27(11):7525–33.

Article  Google Scholar 

Patil Y, Shetty A, Kale Y, Patil R, Sharma S. Multiple ocular disease detection using novel ensemble models. Multimed Tools Appl. 2023;83(4):11957–75.

Article  Google Scholar 

Mehmood A, Gulzar Y, Ilyas QM, Jabbari A, Ahmad M, Iqbal S. Sbxception: a shallower and broader xception architecture for efficient classification of skin lesions. Cancers. 2023;15(14):3604.

Article  Google Scholar 

Anand V, Gupta S, Gupta D, Gulzar Y, Xin Q, Juneja S, Shah A, Shaikh A. Weighted average ensemble deep learning model for stratification of brain tumor in mri images. Diagnostics. 2023;13(7):1320.

Article  Google Scholar 

Gulzar Y, Khan SA. Skin lesion segmentation based on vision transformers and convolutional neural networks-a comparative study. Appl Sci. 2022;12(12):5990.

Article  Google Scholar 

Khan SA, Gulzar Y, Turaev S, Peng YS. A modified hsift descriptor for medical image classification of anatomy objects. Symmetry. 2021;13(11):1987.

Article  Google Scholar 

Badah N, Algefes A, AlArjani A, Mokni R. Automatic eye disease detection using machine learning and deep learning models. In: Pervasive Computing and Social Networking: Proceedings of ICPCSN 2022, pp. 773–787. Springer (2022)

He Z. Deep learning in image classification: A survey report. In: 2020 2nd International Conference on Information Technology and Computer Application (ITCA), pp. 174–177 (2020). IEEE

Dong S, Wang P, Abbas K. A survey on deep learning and its applications. Comput Sci Rev. 2021;40:100379.

Article  MathSciNet  Google Scholar 

Vayadande K, Ingale V, Verma V, Yeole A, Zawar S, Jamadar Z. Ocular disease recognition using deep learning. In: 2022 International Conference on Signal and Information Processing (IConSIP), pp 1–7 (2022). IEEE

Shorten C, Khoshgoftaar TM. A survey on image data augmentation for deep learning. J Big Data. 2019;6(1):1–48.

Article  Google Scholar 

Hao X, Liu L, Yang R, Yin L, Zhang L, Li X. A review of data augmentation methods of remote sensing image target recognition. Remote Sens. 2023;15(3):827.

Article  Google Scholar 

Masood F, Masood J, Zahir H, Driss K, Mehmood N, Farooq H. Novel approach to evaluate classification algorithms and feature selection filter algorithms using medical data. J Comput Cogn Eng. 2023;2(1):57–67.

Google Scholar 

留言 (0)

沒有登入
gif