Galectin-3: action and clinical utility in chronic kidney disease

Lakhtin M, Lakhtin V, Alyoshkin V, Afanasyev S (2011) Lectins of beneficial microbes: system organisation, functioning and functional superfamily. Benef Microbe 2:155–165

Article  CAS  Google Scholar 

Barondes SH, Cooper DN, Gitt MA, Leffler H (1994) Galectins. structure and function of a large family of animal lectins. J Biol Chem 269:20807–20810

Article  CAS  PubMed  Google Scholar 

Boutin L, Dépret F, Gayat E, Legrand M, Chadjichristos CE (2022) Galectin-3 in kidney diseases: from an old protein to a new therapeutic target. Int J Mol Sci 23:3124

Article  CAS  PubMed  PubMed Central  Google Scholar 

Friedrichs J, Manninen A, Muller DJ, Helenius J (2008) Galectin-3 regulates integrin alpha2beta1-mediated adhesion to collagen-I and -IV. J Biol Chem 283:32264–32272. https://doi.org/10.1074/jbc.M803634200

Article  CAS  PubMed  Google Scholar 

Bullock SL, Johnson TM, Bao QI, Hughes RC, Winyard PJD, Woolf AS (2001) Galectin-3 modulates ureteric bud branching in organ culture of the developing mouse kidney. J Am Soc Nephrol 12:515–523. https://doi.org/10.1681/asn.V123515

Article  CAS  PubMed  Google Scholar 

Hikita C, Vijayakumar S, Takito J, Erdjument-Bromage H, Tempst P, Al-Awqati Q (2000) Induction of terminal differentiation in epithelial cells requires polymerization of hensin by galectin 3. J Cell Biol 151:1235–1246. https://doi.org/10.1083/jcb.151.6.1235

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bichara M, Attmane-Elakeb A, Brown D, Essig M, Karim Z, Muffat-Joly M, Micheli L, Eude-Le Parco I, Cluzeaud F, Peuchmaur M (2006) Exploring the role of galectin 3 in kidney function: a genetic approach. Glycobiology 16:36–45

Article  CAS  PubMed  Google Scholar 

Karolko B, Serafin A, Przewłocka-Kosmala M (2022) Impact of moderately reduced renal function on the diagnostic and prognostic value of galectin-3 in patients with exertional dyspnea. Adv Clin Exp Med 31:873–879. https://doi.org/10.17219/acem/147665

Article  PubMed  Google Scholar 

Huang QF, Cheng YB, Guo QH, Wang Y, Chen YL, Zhang DY, An DW, Li Y, Wang JG (2023) Serum galectin-3 and mucin-1 (CA15-3) in relation to renal function in untreated chinese patients. Am J Hypertens 36:176–182. https://doi.org/10.1093/ajh/hpac115

Article  CAS  PubMed  Google Scholar 

Meijers WC, van der Velde AR, Ruifrok WP, Schroten NF, Dokter MM, Damman K, Assa S, Franssen CF, Gansevoort RT, van Gilst WH (2014) Renal handling of galectin-3 in the general population, chronic heart failure, and hemodialysis. J Am Heart Assoc 3:e000962

Article  PubMed  PubMed Central  Google Scholar 

Henderson NC, Mackinnon AC, Farnworth SL, Kipari T, Haslett C, Iredale JP, Liu FT, Hughes J, Sethi T (2008) Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am J Pathol 172:288–298. https://doi.org/10.2353/ajpath.2008.070726

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martinez-Martinez E, Ibarrola J, Calvier L, Fernandez-Celis A, Leroy C, Cachofeiro V, Rossignol P, Lopez-Andres N (2016) Galectin-3 blockade reduces renal fibrosis in two normotensive experimental models of renal damage. PLoS ONE 11:e0166272. https://doi.org/10.1371/journal.pone.0166272

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gasparitsch M, Arndt AK, Pawlitschek F, Oberle S, Keller U, Kasper M, Bierhaus A, Schaefer F, Weber LT, Lange-Sperandio B (2013) RAGE-mediated interstitial fibrosis in neonatal obstructive nephropathy is independent of NF-κB activation. Kidney Int 84:911–919. https://doi.org/10.1038/ki.2013.171

Article  CAS  PubMed  Google Scholar 

Ou SM, Tsai MT, Chen HY, Li FA, Tseng WC, Lee KH, Chang FP, Lin YP, Yang RB, Tarng DC (2021) Identification of galectin-3 as potential biomarkers for renal fibrosis by rna-sequencing and clinicopathologic findings of kidney biopsy. Front Med (Lausanne) 8:748225. https://doi.org/10.3389/fmed.2021.748225

Article  PubMed  Google Scholar 

Okamura DM, Pasichnyk K, Lopez-Guisa JM, Collins S, Hsu DK, Liu FT, Eddy AA (2011) Galectin-3 preserves renal tubules and modulates extracellular matrix remodeling in progressive fibrosis. Am J Physiol Renal Physiol 300:F245-253. https://doi.org/10.1152/ajprenal.00326.2010

Article  CAS  PubMed  Google Scholar 

Savic J, Zeljkovic A, Bogavac-Stanojevic N, Simic-Ogrizovic S, Kravljaca M, Stosovic M, Vekic J, Spasojevic-Kalimanovska V, Jelic-Ivanovic Z, Gojkovic T et al (2014) Association of small, dense low-density lipoprotein cholesterol and galectin-3 in patients with chronic kidney disease. Scand J Clin Lab Invest 74:637–643. https://doi.org/10.3109/00365513.2014.928944

Article  CAS  PubMed  Google Scholar 

Ou SM, Tsai MT, Chen HY, Li FA, Lee KH, Tseng WC, Chang FP, Lin YP, Yang RB, Tarng DC (2022) Urinary galectin-3 as a novel biomarker for the prediction of renal fibrosis and kidney disease progression. Biomedicines. https://doi.org/10.3390/biomedicines10030585

Article  PubMed  PubMed Central  Google Scholar 

Chan GC, Ho PJ, Li J, Lee EJC, Chua HR, Lau T, Sethi S, Teo BW (2020) High-sensitivity troponin I predicts galectin-3 in chronic kidney disease patients. Int Urol Nephrol 52:533–540. https://doi.org/10.1007/s11255-020-02390-5

Article  CAS  PubMed  Google Scholar 

Rebholz CM, Selvin E, Liang M, Ballantyne CM, Hoogeveen RC, Aguilar D, McEvoy JW, Grams ME, Coresh J (2018) Plasma galectin-3 levels are associated with the risk of incident chronic kidney disease. Kidney Int 93:252–259. https://doi.org/10.1016/j.kint.2017.06.028

Article  CAS  PubMed  Google Scholar 

Bansal N, Katz R, Seliger S, DeFilippi C, Sarnak MJ, Delaney JA, Christenson R, de Boer IH, Kestenbaum B, Robinson-Cohen C et al (2016) galectin-3 and soluble ST2 and kidney function decline in older adults: the cardiovascular health study (CHS). Am J Kidney Dis 67:994–996. https://doi.org/10.1053/j.ajkd.2015.12.022

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iacoviello M, Aspromonte N, Leone M, Paradies V, Antoncecchi V, Valle R, Caldarola P, Ciccone MM, Gesualdo L, Serio FD (2016) Galectin-3 serum levels are independently associated with microalbuminuria in chronic heart failure outpatients. Res Cardiovasc Med 5:e28952. https://doi.org/10.5812/cardiovascmed.28952

Article  PubMed  Google Scholar 

O’Seaghdha CM, Hwang SJ, Ho JE, Vasan RS, Levy D, Fox CS (2013) Elevated galectin-3 precedes the development of CKD. J Am Soc Nephrol 24:1470–1477. https://doi.org/10.1681/asn.2012090909

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mueller T, Leitner I, Egger M, Haltmayer M, Dieplinger B (2015) Association of the biomarkers soluble ST2, galectin-3 and growth-differentiation factor-15 with heart failure and other non-cardiac diseases. Clin Chim Acta 445:155–160. https://doi.org/10.1016/j.cca.2015.03.033

Article  CAS  PubMed  Google Scholar 

Ji F, Zhang S, Jiang X, Xu Y, Chen Z, Fan Y, Wang W (2017) Diagnostic and prognostic value of galectin-3, serum creatinine, and cystatin C in chronic kidney diseases. J Clin Lab Anal. https://doi.org/10.1002/jcla.22074

Article  PubMed  PubMed Central  Google Scholar 

Alam ML, Katz R, Bellovich KA, Bhat ZY, Brosius FC, de Boer IH, Gadegbeku CA, Gipson DS, Hawkins JJ, Himmelfarb J et al (2019) Soluble ST2 and galectin-3 and progression of CKD. Kidney Int Rep 4:103–111. https://doi.org/10.1016/j.ekir.2018.09.013

Article  PubMed  Google Scholar 

Kim AJ, Ro H, Kim H, Chang JH, Lee HH, Chung W, Jung JY (2021) Soluble ST2 and galectin-3 as predictors of chronic kidney disease progression and outcomes. Am J Nephrol 52:119–130. https://doi.org/10.1159/000513663

Article  CAS  PubMed  Google Scholar 

Zhang T, Cao S, Yang H, Li J (2019) Prognostic impact of galectin-3 in chronic kidney disease patients: a systematic review and meta-analysis. Int Urol Nephrol 51:1005–1011. https://doi.org/10.1007/s11255-019-02123-3

留言 (0)

沒有登入
gif