Verification of image quality improvement by deep learning reconstruction to 1.5 T MRI in T2-weighted images of the prostate gland

Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. https://doi.org/10.3322/caac.21660.

Article  CAS  PubMed  Google Scholar 

Kimura T, Egawa S. Epidemiology of prostate cancer in Asian countries. Int J Urol. 2018;25:524–31. https://doi.org/10.1111/iju.13593.

Article  PubMed  Google Scholar 

Jeremy YCT, Hoyee WH, Jason MWH, et al. Global incidence of prostate cancer in developing and developed countries with changing age structures. PLoS ONE. 2019;14(10):e0221775. https://doi.org/10.1371/journal.pone.0221775.

Article  CAS  Google Scholar 

Kaji Y, Kuroda K, Maeda T, Kitamura Y, Fujiwara T, Matsuoka Y, Tamura M, Takei N, Matsuda T, Sugimura K. Anatomical and metabolic assessment of prostate using a 3-Tesla MR scanner with a custom-made external transceive coil: healthy volunteer study. J Magn Reson Imaging. 2007;25(3):517–26. https://doi.org/10.1002/jmri.20829.

Article  PubMed  Google Scholar 

Park JJ, Kim CK, Park SY, Park BK, Lee HM, Cho SW. Prostate cancer: role of pretreatment multiparametric 3-T MRI in predicting biochemical recurrence after radical prostatectomy. Am J Roentgenol. 2014;202:W459–65. https://doi.org/10.2214/ajr.13.11381.

Article  Google Scholar 

Sklinda K, Fraczek M, Mruk B, et al. Normal 3T MR anatomy of the prostate gland and surrounding structures. Adv Med. 2019;2019:3040859. https://doi.org/10.1155/2019/3040859.

Article  CAS  PubMed  PubMed Central  Google Scholar 

PI-RADS (2019) Prostate imaging reporting and data system version 2.1. Am Coll Radiol

Mara MB, Smith MP, Pedrosa I, et al. Body MR imaging at 3.0 T: understanding the opportunities and challenges. Radiographics. 2007;27:1445–62. https://doi.org/10.1148/rg.275065204.

Article  Google Scholar 

Isoda H, Kataoka M, Maetani Y, et al. MRCP imaging at 3.0 T vs 1.5 T: preliminary experience in healthy volunteers. J Magn Reson Imaging. 2007;25:1000–6. https://doi.org/10.1002/jmri.20892.

Article  PubMed  Google Scholar 

Mazaheri Y, Vargas HA, Nyman G, Akin O, Hricak H, et al. Image artifacts on prostate diffusion-weighted magnetic resonance imaging: trade-offs at 1.5 Tesla and 3.0 Tesla. Acad Radiol. 2013;20:1041–7. https://doi.org/10.1016/j.acra.2013.04.005.

Article  PubMed  PubMed Central  Google Scholar 

Jerrolds J, Keene S. MRI safety at 3 T versus 1.5 T. Internet J World Health Soc Polit. 2009;6(1).

Greenman RL, Shirosky JE, Mulkern RV, Rofsky NM. Double inversion black-blood fast spin-echo imaging of the human heart: a comparison between 1.5 T and 3.0 T. J Magn Reson Imaging. 2003;17:648–55. https://doi.org/10.1002/jmri.10316.

Article  PubMed  Google Scholar 

Ullrich T, Quentin M, Oelers C, et al. Magnetic resonance imaging of the prostate at 1.5 versus 3.0 T: a prospective comparison study of image quality. Eur J Radiol. 2017;90:192–7. https://doi.org/10.1016/j.ejrad.2017.02.044.

Article  CAS  PubMed  Google Scholar 

Yokota Y, Takeda C, Kidoh M, et al. Effects of deep learning reconstruction technique in high-resolution non-contrast magnetic resonance coronary angiography at a 3-tesla machine. Can Assoc Radiol J. 2021;72:120–7. https://doi.org/10.1177/0846537119900469.

Article  PubMed  Google Scholar 

Akatsuka J, Yamamoto Y, Sekine T, et al. Illuminating clues of cancer buried in prostate MR image: deep learning and expert approaches. Biomolecules. 2019;9:673. https://doi.org/10.3390/biom9110673.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qiu D, Zhang S, Liu Y, et al. Super-resolution reconstruction of knee magnetic resonance imaging based on deep learning. Comput Methods Prog Biomed. 2020;187: 105059. https://doi.org/10.1016/j.cmpb.2019.105059.

Article  Google Scholar 

Lee KL, Kessler DA, Dezonie S, et al. Assessment of deep learning-based reconstruction on T2-weighted and diffusion-weighted prostate MRI image quality. Eur J Radiol. 2023;166: 111017. https://doi.org/10.1016/j.ejrad.2023.111017.

Article  PubMed  Google Scholar 

Kim EH, Choi MH, Lee YJ, et al. Deep learning-accelerated T2-weighted imaging of the prostate: Impact of further acceleration with lower spatial resolution on image quality. Eur J Radiol. 2021;145: 110012. https://doi.org/10.1016/j.ejrad.2021.110012.

Article  PubMed  Google Scholar 

Wang X, Ma J, Bhosale P, et al. Novel deep learning-based noise reduction technique for prostate magnetic resonance imaging. Abdom Radiol. 2021;46:3378–86. https://doi.org/10.1007/s00261-021-02964-6.

Article  Google Scholar 

Gassenmaier S, Afat S, Nickel MD, et al. Accelerated T2-weighted TSE imaging of the prostate using deep learning image reconstruction: a prospective comparison with standard T2-weighted TSE imaging. Cancers. 2021;13:3593. https://doi.org/10.3390/cancers13143593.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kidoh M, Shinoda K, Kitajima M, et al. Deep learning based noise reduction for brain MR imaging: tests on phantoms and healthy volunteers. Magn Reson Med Sci. 2020;19(3):195–206. https://doi.org/10.2463/mrms.mp.2019-0018.

Article  PubMed  Google Scholar 

Yasaka K, Akai H, Sugawara H, et al. Impact of deep learning reconstruction on intracranial 1.5 T magnetic resonance angiography. Jpn J Radiol. 2022;40(5):476–83. https://doi.org/10.1007/s11604-021-01225-2.

Article  PubMed  Google Scholar 

Ueda T, Ohno Y, Yamamoto K, et al. Compressed sensing and deep learning reconstruction for women’s pelvic MRI denoising: utility for improving image quality and examination time in routine clinical practice. Eur J Radiol. 2021;134: 109430. https://doi.org/10.1016/j.ejrad.2020.109430.

Article  PubMed  Google Scholar 

Tajima T, Akai H, Sugawara H, et al. Breath-hold 3D magnetic resonance cholangiopancreatography at 1.5 T using a deep learning-based noise-reduction approach: comparison with the conventional respiratory-triggered technique. Eur J Radiol. 2021;144:109994. https://doi.org/10.1016/j.ejrad.2021.109994.

Article  PubMed  Google Scholar 

Tanabe M, Higashi M, Yonezawa T, et al. Feasibility of high-resolution magnetic resonance imaging of the liver using deep learning reconstruction based on the deep learning denoising technique. Magn Reson Imaging. 2021;80:121–6. https://doi.org/10.1016/j.mri.2021.05.001.

Article  PubMed  Google Scholar 

Ueda T, Ohno Y, Yamamoto K, et al. Deep learning reconstruction of diffusion-weighted MRI improves image quality for prostatic imaging. Radiology. 2022;303:373–81. https://doi.org/10.1148/radiol.204097.

Article  PubMed  Google Scholar 

Akai H, Yasaka K, Sugawara H, et al. Commercially available deep-learning-reconstruction of MR imaging of the knee at 1.5T has higher image quality than conventionally-reconstructed imaging at 3T: a normal volunteer study. Magn Reson Med Sci. 2023;22:353–60. https://doi.org/10.2463/mrms.mp.2022-0020.

Article  PubMed  Google Scholar 

Yasaka K, Tanishima T, Ohtake Y, et al. Deep learning reconstruction for the evaluation of neuroforaminal stenosis using 1.5T cervical spine MRI: comparison with 3T MRI without deep learning reconstruction. Neuroradiology. 2022;64:2077–83. https://doi.org/10.1007/s00234-022-03024-6.

Article  PubMed  Google Scholar 

Tajima T, Akai H, Yasaka K, et al. Usefulness of deep learning-based noise reduction for 1.5 T MRI brain images. Clin Radiol. 2023;78:e13–21. https://doi.org/10.1016/j.crad.2022.08.127.

Article  CAS  PubMed  Google Scholar 

Mandrekar JN. Measures of Interrater Agreement. J Thorac Oncol. 2011;6(1):6–7. https://doi.org/10.1097/jto.0b013e318200f983.

Article  PubMed  Google Scholar 

Kanda Y. Investigation of the freely-available easy-to-use software “EZR” (Easy R) for medical statistics. Bone Marrow Transplant. 2013;48:452–8. https://doi.org/10.1038/bmt.2012.244.

Article  CAS  PubMed  Google Scholar 

Zhang J, Tian W-Z, Hu C-H, et al. Age-related changes of normal prostate: evaluation by MR diffusion tensor imaging. Int J Clin Exp Med. 2015;8(7):11220–4.

PubMed  PubMed Central  Google Scholar 

Bura V, Caglic I, Snoj Z, et al. MRI features of the normal prostatic peripheral zone: the relationship between age and signal heterogeneity on T2WI, DWI, and DCE sequences. Eur Radiol. 2021;31:4908–17. https://doi.org/10.1007/s00330-020-07545-7.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif