Association of continuous kidney replacement therapy timing and mortality in critically ill children

Sutherland SM, Byrnes JJ, Kothari M et al (2015) AKI in hospitalized children: comparing the pRIFLE, AKIN, and KDIGO definitions. Clin J Am Soc Nephrol 10:554–561. https://doi.org/10.2215/CJN.01900214

Article  PubMed  PubMed Central  Google Scholar 

Kaddourah A, Basu RK, Bagshaw SM et al (2017) Epidemiology of acute kidney injury in critically ill children and young adults. N Engl J Med 376:11–20. https://doi.org/10.1056/NEJMoa1611391

Article  PubMed  Google Scholar 

Beltramo F, DiCarlo J, Gruber J et al (2019) Renal replacement therapy modalities in critically ill children. Pediatr Crit Care Med 20:e1-9. https://doi.org/10.1097/PCC.0000000000001754

Article  PubMed  Google Scholar 

Sutherland SM, Zappitelli M, Alexander SR et al (2010) Fluid overload and mortality in children receiving continuous kidney replacement therapy: the prospective pediatric continuous kidney replacement therapy registry. Am J Kidney Dis 55:316–325. https://doi.org/10.1053/j.ajkd.2009.10.048

Article  PubMed  Google Scholar 

Goldstein SL, Currier H, Graf JM et al (2001) Outcome in children receiving continuous venovenous hemofiltration. Pediatrics 107:1309–1312. https://doi.org/10.1542/peds.107.6.1309

Article  CAS  PubMed  Google Scholar 

Zarbock A, Kellum JA, Schmidt C et al (2016) Effect of early vs delayed initiation of kidney replacement therapy on mortality in critically ill patients with acute kidney injury: The ELAIN randomized clinical trial. JAMA 315:2190–2199. https://doi.org/10.1001/jama.2016.5828

Article  CAS  PubMed  Google Scholar 

Gaudry S, Hajage D, Schortgen F et al (2016) AKIKI study group: initiation strategies for kidney-replacement therapy in the intensive care unit. N Engl J Med 375:122–133. https://doi.org/10.1056/NEJMoa1603017

Article  PubMed  Google Scholar 

Barbar SD, Clere-Jehl R, Bourredjem A et al (2018) IDEAL-ICU trial investigators and the CRICS TRIGGERSEP network: timing of kidney-replacement therapy in patients with acute kidney injury and sepsis. N Engl J Med 379:1431–1442. https://doi.org/10.1056/NEJMoa1803213

Article  CAS  PubMed  Google Scholar 

STARRT-AKI Investigators, Canadian Critical Care Trials Group, Australian and New Zealand Intensive Care Society Clinical Trials Group, United Kingdom Critical Care Research Group, Canadian Nephrology Trials Network, Irish Critical Care Trials Group, Bagshaw SM, Wald R, Adhikari NKJ et al (2020) Timing of initiation of kidney-replacement therapy in acute kidney injury. N Engl J Med 383:240–251. https://doi.org/10.1056/NEJMoa2000741

Norungroj T, Neto AS, Yanase F et al (2021) Time to initiation of kidney replacement therapy among critically ill patients with acute kidney injury: a current systematic review and meta-analysis. Crit Care Med 49:781–792. https://doi.org/10.1097/CCM.0000000000005018

Article  Google Scholar 

Harris PA, Taylor R, Thielke R et al (2009) Research electronic data capture (REDCap) – a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform 42:377–381. https://doi.org/10.1016/j.jbi.2008.08.010

Article  PubMed  Google Scholar 

Pollack MM, Patel KM, Ruttimann UE (1996) PRISM III: an updated pediatric risk of mortality score. Crit Care Med 24:743–752. https://doi.org/10.1097/00003246-199605000-00004

Article  CAS  PubMed  Google Scholar 

Hessey E, Ali R, Dorais M et al (2017) Evaluation of height-dependent and height-independent methods of estimating baseline serum creatinine in critically ill children. Pediatr Nephrol 32:1953–1962. https://doi.org/10.1007/s00467-017-3670-z

Article  PubMed  Google Scholar 

Liu KD, Thompson BT, Ancukiewicz M et al (2011) National Institutes of Health National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome Network: Acute kidney injury in patients with acute lung injury: impact of fluid accumulation on classification of acute kidney injury and associated outcomes. Crit Care Med 39:2665–2671. https://doi.org/10.1097/CCM.0b013e318228234b

Article  PubMed  PubMed Central  Google Scholar 

Kellum JA, Lameire N, Aspelin P et al (2012) Kidney disease: improving global outcomes (KDIGO) acute kidney injury work group. Kidney Int Suppl 2:1–139. 10.1038.kisup.2012.1

Cortina G, McRae R, Hoq M et al (2019) Mortality of critically ill children requiring continuous kidney replacement therapy: effect of fluid overload, underlying disease and timing of initiation. Pediatr Crit Care Med 20:314–322. https://doi.org/10.1097/PCC.0000000000001806

Article  PubMed  Google Scholar 

Modem V, Thompson M, Gollhofer D et al (2014) Timing of continuous kidney replacement therapy and mortality in critically ill children. Crit Care Med 42:943–953. https://doi.org/10.1097/CCM/0000000000000039

Article  CAS  PubMed  Google Scholar 

Hames DL, Ferguson MA, Salvin JW et al (2019) Risk factors for mortality in critically ill children requiring kidney replacement therapy. Pediatr Crit Care Med 20:1069–1077. https://doi.org/10.1097/CCM/0000000000002045

Article  PubMed  Google Scholar 

Gaudry S, Hajage D, Martin-Lefevre L et al (2021) Comparison of two delayed strategies for renal replacement therapy initiation for severe acute kidney injury (AKIKI 2): a multicentre, open-label, randomised, controlled trial. Lancet 397:1293–1300. https://doi.org/10.1016/S0140-6736(21)00350-0

Article  CAS  PubMed  Google Scholar 

Bagshaw SM, Uchino S, Bellomo R et al (2009) Timing of kidney replacement therapy and clinical outcomes in critically ill patients with severe acute kidney injury. J Crit Care 24:129–140. https://doi.org/10.1016/j.jcrc.2007.12.017

Article  PubMed  Google Scholar 

Hassinger AB, Garimella S, Wrotniak B et al (2016) The current state of the diagnosis and management of acute kidney injury by pediatric critical care physicians. Pediatr Crit Care 17:e362-370. https://doi.org/10.1097/PCC.00000000000857

Article  Google Scholar 

Burns JP, Sellers DE, Meyer EC et al (2014) Epidemiologic of death in the pediatric intensive care unit at five US teaching hospitals. Crit Care Med 42:2101–2108. https://doi.org/10.1097/CCM.0000000000000498

Article  PubMed  PubMed Central  Google Scholar 

Watson RS, Crow SC, Hartman ME et al (2017) Epidemiology and outcomes of pediatric organ dysfunction syndrome. Pediatr Crit Care Med 18:S4-16. https://doi.org/10.1097/PCC.0000000000001047

Article  PubMed  PubMed Central  Google Scholar 

Hall A, Crichton S, Dixon A et al (2020) Fluid removal associates with better outcomes in critically ill patients receiving continuous kidney replacement therapy: a cohort study. Crit Care 24:279–289. https://doi.org/10.1186/s13054-020-02986-4

Article  PubMed  PubMed Central  Google Scholar 

Bagshaw SM, Gibney RTN, Kruger P, Hassan I, McAlister FA, Bellomo R (2017) The effect of low-dose furosemide in critically ill patients with early acute kidney injury: a pilot randomized blinded controlled trial (the SPARK study). J Crit Care 42:138–146. https://doi.org/10.1016/j.jcrc.2017.07.030

Article  CAS  PubMed  Google Scholar 

Fitzgerald JC, Basu RK, Fuhrman DY et al (2022) Kidney dysfunction criteria in critically ill children. Pediatrics 149:S66–S73. https://doi.org/10.1542/peds.2021-052888J

Article  PubMed  Google Scholar 

Lumlertgul A, Peerapornratana S, Trakarnvanich T et al (2019) Easly versus standard initiation of renal replacement therap in furosemide stress test non-responsive acute kidney injury patients (the FST trial). Crit Care 22:101. https://doi.org/10.1186/s13054-018-2021-1

Article  Google Scholar 

留言 (0)

沒有登入
gif