Buehler MJ. Nature designs tough collagen: Explaining the nanostructure of collagen fibrils. Proc Natl Acad Sci. 2006;103(33):12285–90. https://doi.org/10.1073/pnas.0603216103.
Article CAS PubMed PubMed Central Google Scholar
Klouda L, Mikos AG. Thermoresponsive Hydrogels in biomedical applications. Eur J Pharm Biopharm. 2008;68(1):34–45. https://doi.org/10.1016/j.ejpb.2007.02.025.
Article CAS PubMed Google Scholar
Erikson A, Andersen HN, Naess SN, Sikorski P, de Davies C. Physical and chemical modifications of collagen gels: Impact on diffusion. Biopolymers. 2008;89(2):135–43. https://doi.org/10.1002/bip.20874.
Article CAS PubMed Google Scholar
Liu J, Su C, Chen Y, Tian S, Lu C, Huang W, Lv Q. Current understanding of the applications of photocrosslinked Hydrogels in biomedical engineering. Gels. 2022;8(4):216. https://doi.org/10.3390/gels8040216.
Article CAS PubMed PubMed Central Google Scholar
Lee KY, Mooney DJ. Alginate: Properties and biomedical applications. Prog Polym Sci. 2012;37(1):106–26. https://doi.org/10.1016/j.progpolymsci.2011.06.003.
Article CAS PubMed PubMed Central Google Scholar
Tse JR, Engler AJ. Preparation of hydrogel substrates with tunable mechanical properties. Curr Protoc Cell Biol. 2010;47(1) https://doi.org/10.1002/0471143030.cb1016s47.
Singh A, Zhan J, Ye Z, Elisseeff JH. Modular multifunctional poly(ethylene glycol) hydrogels for stem cell differentiation. Adv Funct Mater. 2012;23(5):575–82. https://doi.org/10.1002/adfm.201201902.
Article CAS PubMed PubMed Central Google Scholar
Wang Z, Chen R, Yang S, Li S, Gao Z. Design and application of stimuli-responsive DNA hydrogels: A Review. Materials Today Bio. 2022;16:100430. https://doi.org/10.1016/j.mtbio.2022.100430.
Article CAS PubMed PubMed Central Google Scholar
Gačanin J, Synatschke CV, Weil T. Biomedical applications of dna-based hydrogels. Adv Funct Mater. 2019;30(4):1906253. https://doi.org/10.1002/adfm.201906253.
Lin DC, Yurke B, Langrana NA. Mechanical properties of a reversible, DNA-crosslinked polyacrylamide hydrogel. J Biomech Eng. 2004;126(1):104–10. https://doi.org/10.1115/1.1645529.
Girotti A, Escalera-Anzola S, Alonso-Sampedro I, González-Valdivieso J, Arias FJ. Aptamer-functionalized natural protein-based polymers as innovative biomaterials. Pharmaceutics. 2020;12(11):1115. https://doi.org/10.3390/pharmaceutics12111115.
Article CAS PubMed PubMed Central Google Scholar
James BD, Saenz S, van Gent A, Allen JB. Oligomer length defines the self-assembly of single-stranded DNA–collagen complex fibers. ACS Biomater Sci Eng. 2019;6(1):213–8. https://doi.org/10.1021/acsbiomaterials.9b01435.
Article CAS PubMed Google Scholar
James BD, Guerin P, Iverson Z, Allen JB. Mineralized DNA-collagen complex-based biomaterials for bone tissue engineering. Int J Biol Macromol. 2020;161:1127–39. https://doi.org/10.1016/j.ijbiomac.2020.06.126.
Article CAS PubMed PubMed Central Google Scholar
Ursino HL, James BD, Ludtka CM, Allen JB. Bone Tissue Engineering. Tissue Eng Using Ceram Polym. 2022:587–644. https://doi.org/10.1016/b978-0-12-820508-2.00018-0.
James BD, Allen JB. Self-assembled VEGF-R2 targeting DNA aptamer-collagen fibers stimulate an angiogenic-like endothelial cell phenotype. Mater Sci Eng C. 2021;120:111683. https://doi.org/10.1016/j.msec.2020.111683.
Ghassemi Z, Ruesing S, Leach JB, Zustiak SP. Stability of proteins encapsulated in michael-type addition Polyethylene Glycol Hydrogels. Biotechnol Bioeng. 2021;118(12):4840–53. https://doi.org/10.1002/bit.27949.
Article CAS PubMed PubMed Central Google Scholar
de Campos Vidal B, Mello ML. Collagen type I amide I band infrared spectroscopy. Micron. 2011;42(3):283–9. https://doi.org/10.1016/j.micron.2010.09.010.
Ji Y, et al. DFT-calculated IR spectrum amide I, II, and III band contributions of n-methylacetamide fine components. ACS Omega. 2020;5(15):8572–8. https://doi.org/10.1021/acsomega.9b04421.
Article CAS PubMed PubMed Central Google Scholar
Izui S, Lambert PH, Miescher PA. In vitro demonstration of a particular affinity of glomerular basement membrane and collagen for DNA. A possible basis for a local formation of DNA-anti-DNA complexes in systemic lupus erythematosus. J Exp Med. 1976;144(2):428–43. https://doi.org/10.1084/jem.144.2.428.
Article CAS PubMed Google Scholar
Streeter I, de Leeuw NH. A molecular dynamics study of the interprotein interactions in collagen fibrils. Soft Matter. 2011 Apr 7;7(7):3373–82. https://doi.org/10.1039/C0SM01192D.
Article CAS PubMed PubMed Central Google Scholar
Stojkov G, Niyazov Z, Picchioni F, Bose RK. Relationship between structure and rheology of hydrogels for various applications. Gels. 2021;7(4):255. https://doi.org/10.3390/gels7040255.
Article CAS PubMed PubMed Central Google Scholar
Ku T-H, Zhang T, Luo H, Yen T, Chen P-W, Han Y, Lo Y-H. Nucleic acid aptamers: An emerging tool for Biotechnology and Biomedical Sensing. Sensors. 2015;15(7):16281–313. https://doi.org/10.3390/s150716281.
Article CAS PubMed PubMed Central Google Scholar
Brightman AO, Rajwa BP, Sturgis JE, McCallister ME, Robinson JP, Voytik-Harbin SL. Time-lapse confocal reflection microscopy of collagen fibrillogenesis and extracellular matrix assembly in vitro. Biopolymers. 2000;54(3):222–34. https://doi.org/10.1002/1097-0282(200009)54:3<222::aid-bip80>3.0.co;2-k.
Article CAS PubMed Google Scholar
Hwang ES, Morgan DJ, Sun J, Hartnett ME, Toussaint KC Jr, Coats B. Confocal reflectance microscopy for mapping collagen fiber organization in the vitreous gel of the eye. Biomed Opt Express. 2023 Jan 30;14(2):932–44. https://doi.org/10.1364/BOE.480343.
Article PubMed PubMed Central Google Scholar
Antoine EE, Vlachos PP, Rylander MN. Review of collagen I hydrogels for bioengineered tissue microenvironments: Characterization of mechanics, Structure, and transport. Tissue Eng Part B Rev. 2014;20(6):683–96. https://doi.org/10.1089/ten.teb.2014.0086.
Article CAS PubMed PubMed Central Google Scholar
Martin R, Farjanel J, Eichenberger D, Colige A, Kessler E, Hulmes DJS, Giraud-Guille M-M. Liquid crystalline ordering of Procollagen as a determinant of three-dimensional extracellular matrix architecture. J Mol Biol. 2000;301(1):11–7. https://doi.org/10.1006/jmbi.2000.3855.
Article CAS PubMed Google Scholar
Hulmes DJS, Miller A, Parry DAD, Piez KA, Woodhead-Galloway J. Analysis of the primary structure of collagen for the origins of molecular packing. J Mol Biol. 1973;79(1):137–48. https://doi.org/10.1016/0022-2836(73)90275-1.
Article CAS PubMed Google Scholar
Svintradze DV, Mrevlishvili GM, Metreveli N, Jariashvili K, Namicheishvili L, Skopinska J, Sionkowska A. Collagen–DNA complex. Biomacromolecules. 2007;9(1):21–8. https://doi.org/10.1021/bm7008813.
Article CAS PubMed Google Scholar
Tsou Y-H, Khoneisser J, Huang P-C, Xu X. Hydrogel as a bioactive material to regulate stem cel0l fate. Bioactive Mater. 2016;1(1):39–55. https://doi.org/10.1016/j.bioactmat.2016.05.001.
Smith LR, Cho S, Discher DE. Stem Cell Differentiation is Regulated by Extracellular Matrix Mechanics. Physiology (Bethesda). 2018 Jan 1;33(1):16–25. https://doi.org/10.1152/physiol.00026.2017.
Article CAS PubMed Google Scholar
Virdi JK, Pethe P. Soft substrate maintains stemness and pluripotent stem cell-like phenotype of human embryonic stem cells under defined culture conditions. Cytotechnology. 2022 Aug;74(4):479–89. https://doi.org/10.1007/s10616-022-00537-z.
Article CAS PubMed PubMed Central Google Scholar
Keung AJ, Asuri P, Kumar S, Schaffer DV. Soft microenvironments promote the early neurogenic differentiation but not self-renewal of human pluripotent stem cells. Integr Biol (Camb). 2012 Sep;4(9):1049–58. https://doi.org/10.1039/c2ib20083j.
Article CAS PubMed PubMed Central Google Scholar
Saha K, Keung AJ, Irwin EF, Li Y, Little L, Schaffer DV, Healy KE. Substrate modulus directs neural stem cell behavior. Biophys J. 2008 Nov 1;95(9):4426–38. https://doi.org/10.1529/biophysj.108.132217.
Article CAS PubMed PubMed Central Google Scholar
Flanagan LA, Ju YE, Marg B, Osterfield M, Janmey PA. Neurite branching on deformable substrates. Neuroreport. 2002 Dec
留言 (0)