Biological basis of critical illness subclasses: from the bedside to the bench and back again

Vincent J-L, et al. Assessment of the worldwide burden of critical illness: the intensive care over nations (ICON) audit. Lancet Respir Med. 2014;2:380–6.

Article  PubMed  Google Scholar 

Weiss SL, et al. Global epidemiology of pediatric severe sepsis: the sepsis prevalence, outcomes, and therapies study. Am J Respir Crit Care Med. 2015;191:1147–57.

Article  PubMed  PubMed Central  Google Scholar 

Bellani G, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315:788–800.

Article  CAS  PubMed  Google Scholar 

Kaddourah A, Basu RK, Bagshaw SM, Goldstein SL. Epidemiology of acute kidney injury in critically ill children and young adults. N Engl J Med. 2017;376(1):11–20. https://doi.org/10.1056/NEJMoa1611391.

Article  PubMed  Google Scholar 

Rudd KE, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. The Lancet. 2020;395:200–11.

Article  Google Scholar 

Patel BK, et al. Effect of early mobilisation on long-term cognitive impairment in critical illness in the USA: a randomised controlled trial. Lancet Respir Med. 2023;11:563–72.

Article  PubMed  Google Scholar 

Carlton EF, Donnelly JP, Hensley MK, Cornell TT, Prescott HC. New medical device acquisition during pediatric severe sepsis hospitalizations. Crit Care Med. 2020;48:725–31.

Article  PubMed  PubMed Central  Google Scholar 

Prescott HC, Osterholzer JJ, Langa KM, Angus DC, Iwashyna TJ. Late mortality after sepsis: propensity matched cohort study. BMJ. 2016;353:i2375.

Article  PubMed  PubMed Central  Google Scholar 

Hartman ME, et al. Readmission and late mortality after critical illness in childhood. Pediatr Crit Care Med. 2017;18:e112–21.

Article  PubMed  PubMed Central  Google Scholar 

Zimmerman JJ, et al. Critical illness factors associated with long-term mortality and health related quality of life morbidity following community-acquired pediatric septic shock. Crit Care Med. 2020;48:319–28.

Article  PubMed  PubMed Central  Google Scholar 

Marshall JC. Why have clinical trials in sepsis failed? Trends Mol Med. 2014;20:195–203.

Article  PubMed  Google Scholar 

Shah FA, et al. A research agenda for precision medicine in sepsis and acute respiratory distress syndrome: an official american thoracic society research statement. Am J Respir Crit Care Med. 2021;204:891–901.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maslove DM, et al. Redefining critical illness. Nat Med. 2022;28:1141–8.

Article  CAS  PubMed  Google Scholar 

Stanski NL, Wong HR. Prognostic and predictive enrichment in sepsis. Nat Rev Nephrol. 2020;16:20–31.

Article  PubMed  Google Scholar 

Reddy K, et al. Subphenotypes in critical care: translation into clinical practice. Lancet Respir Med. 2020;8:631–43.

Article  PubMed  Google Scholar 

Sinha P, Meyer NJ, Calfee CS. Biological phenotyping in sepsis and acute respiratory distress syndrome. Annu Rev Med. 2023;74:457–71.

Article  CAS  PubMed  Google Scholar 

Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol. 2013;13:862–74.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Delano MJ, Ward PA. Sepsis-induced immune dysfunction: can immune therapies reduce mortality? J Clin Invest. 2016;126:23–31.

Article  PubMed  PubMed Central  Google Scholar 

Wong HR, et al. Genome-level expression profiles in pediatric septic shock indicate a role for altered zinc homeostasis in poor outcome. Physiol Genomics. 2007;30:146–55.

Article  CAS  PubMed  Google Scholar 

Cvijanovich N, et al. Validating the genomic signature of pediatric septic shock. Physiol Genomics. 2008;34:127–34.

Article  CAS  PubMed  Google Scholar 

Wong HR, et al. Identification of pediatric septic shock subclasses based on genome-wide expression profiling. BMC Med. 2009;7:34.

Article  PubMed  PubMed Central  Google Scholar 

Wong HR, et al. Validation of a gene expression-based subclassification strategy for pediatric septic shock. Crit Care Med. 2011;39:2511–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wong HR, et al. Developing a clinically feasible personalized medicine approach to pediatric septic shock. Am J Respir Crit Care Med. 2015;191:309–15.

Article  PubMed  PubMed Central  Google Scholar 

Grunwell JR, et al. Differential expression of the Nrf2-linked genes in pediatric septic shock. Crit Care. 2015;19:327.

Article  PubMed  PubMed Central  Google Scholar 

Yang JO, et al. Whole blood transcriptomics identifies subclasses of pediatric septic shock. Crit Care. 2023;27:486.

Article  PubMed  PubMed Central  Google Scholar 

Davenport EE, et al. Genomic landscape of the individual host response and outcomes in sepsis: a prospective cohort study. Lancet Respir Med. 2016;4:259–71.

Article  PubMed  PubMed Central  Google Scholar 

Antcliffe DB, et al. Transcriptomic signatures in sepsis and a differential response to steroids. From the VANISH randomized trial. Am J Respir Crit Care Med. 2019;199:980–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sweeney TE, et al. Unsupervised analysis of transcriptomics in bacterial sepsis across multiple datasets reveals three robust clusters. Crit Care Med. 2018;46:915–25.

Article  PubMed  PubMed Central  Google Scholar 

Balch JA, et al. Defining critical illness using immunological endotypes in patients with and without sepsis: a cohort study. Crit Care. 2023;27:292.

Article  PubMed  PubMed Central  Google Scholar 

Sweeney TE, et al. Validation of inflammopathic, adaptive, and coagulopathic sepsis endotypes in coronavirus disease 2019. Crit Care Med. 2021;49:e170–8.

Article  CAS  PubMed  Google Scholar 

Iglesias J, et al. A 33-mRNA classifier is able to produce inflammopathic, adaptive, and coagulopathic endotypes with prognostic significance: the outcomes of metabolic resuscitation using ascorbic acid, thiamine, and glucocorticoids in the early treatment of sepsis (ORANGES) trial. J Pers Med. 2020;11:9.

Article  PubMed  PubMed Central  Google Scholar 

Kyriazopoulou E, et al. Transitions of blood immune endotypes and improved outcome by anakinra in COVID-19 pneumonia: an analysis of the SAVE-MORE randomized controlled trial. Crit Care. 2024;28:73.

Article  PubMed  PubMed Central  Google Scholar 

Scicluna BP, et al. Classification of patients with sepsis according to blood genomic endotype: a prospective cohort study. Lancet Respir Med. 2017;5:816–26.

Article  PubMed  Google Scholar 

Shankar-Hari M, et al. Reframing sepsis immunobiology for translation: towards informative subtyping and targeted immunomodulatory therapies. Lancet Respi Med. 2024;12(4):323–36.

Article  CAS  Google Scholar 

Yehya N, et al. Peripheral blood transcriptomic sub-phenotypes of pediatric acute respiratory distress syndrome. Crit Care. 2020;24:681.

Article  PubMed  PubMed Central  Google Scholar 

Calfee CS, et al. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir Med. 2014;2:611–20.

Article  PubMed  PubMed Central  Google Scholar 

Dahmer MK, et al. Identification of phenotypes in paediatric patients with acute respiratory distress syndrome: a latent class analysis. Lancet Respir Med. 2022;10:289–97.

Article  PubMed  Google Scholar 

Yehya N, et al. Identification of molecular subphenotypes in two cohorts of paediatric ARDS. Thorax. 2024;79:128–34.

Article  PubMed  Google Scholar 

Famous KR, et al. Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy. Am J Respir Crit Care Med. 2017;195:331–8.

Article  CAS 

留言 (0)

沒有登入
gif