Metastasis-associated fibroblasts in peritoneal surface malignancies

Cortés-Guiral D, Hübner M, Alyami M, Bhatt A, Ceelen W, Glehen O. et al. Primary and metastatic peritoneal surface malignancies. Nat Rev Dis Primers. 2021;7:91. http://www.ncbi.nlm.nih.gov/pubmed/34916522.

Article  PubMed  Google Scholar 

Sugarbaker PH. A narrative review of what can HIPEC do. Eur J Surg Oncol. 2023;49:106976 http://www.ncbi.nlm.nih.gov/pubmed/37453879.

Article  PubMed  Google Scholar 

Solon JG, O’Neill M, Chang KH, Deady S, Cahill R, Moran B, et al. An 18 year population-based study on site of origin and outcome of patients with peritoneal malignancy in Ireland. Eur J Surg Oncol. 2017;43:1924–31. http://www.ncbi.nlm.nih.gov/pubmed/28583791.

Article  CAS  PubMed  Google Scholar 

Carr NJ. New insights in the pathology of peritoneal surface malignancy. J Gastrointest Oncol. 2021;12:S216–29. http://www.ncbi.nlm.nih.gov/pubmed/33968439.

Article  PubMed  PubMed Central  Google Scholar 

Burg L, Timmermans M, van der Aa M, Boll D, Rovers K, de Hingh I, et al. Incidence and predictors of peritoneal metastases of gynecological origin: a population-based study in the Netherlands. J Gynecol Oncol. 2020;31:e58.

Rijken A, Lurvink RJ, Luyer MDP, Nieuwenhuijzen GAP, van Erning FN, van Sandick JW, et al. The burden of peritoneal metastases from gastric cancer: a systematic review on the incidence, risk factors and survival. J Clin Med. 2021;10:4882.

Segelman J, Granath F, Holm T, Machado M, Mahteme H, Martling A. Incidence, prevalence and risk factors for peritoneal carcinomatosis from colorectal cancer. Br J Surg. 2012;99:699–705. http://www.ncbi.nlm.nih.gov/pubmed/22287157.

Article  CAS  PubMed  Google Scholar 

Lenos KJ, Bach S, Ferreira Moreno L, ten Hoorn S, Sluiter NR, Bootsma S, et al. Molecular characterization of colorectal cancer related peritoneal metastatic disease. Nat Commun. 2022;13:1–14. https://www.nature.com/articles/s41467-022-32198-z.

Article  Google Scholar 

Guinney J, Dienstmann R, Wang X, De Reyniès A, Schlicker A, Soneson C, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21:1350–6. https://doi.org/10.1038/nm.3967.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Levine EA, Blazer DG, Kim MK, Shen P, Stewart JH, Guy C, et al. Gene expression profiling of peritoneal metastases from appendiceal and colon cancer demonstrates unique biologic signatures and predicts patient outcomes. J Am Coll Surg. 2012;214:599–606. http://www.ncbi.nlm.nih.gov/pubmed/22342786.

Article  PubMed  PubMed Central  Google Scholar 

Sugarbaker PH, Chang D, Liang J. Pathogenesis of histologic variations of appendiceal mucinous neoplasms. Eur J Surg Oncol. 2023;49:895–901. http://www.ncbi.nlm.nih.gov/pubmed/36863914.

Article  PubMed  Google Scholar 

Miyazaki M, Nakabo A, Nagano Y, Nagamura Y, Yanagihara K, Ohki R, et al. Tissue factor-induced fibrinogenesis mediates cancer cell clustering and multiclonal peritoneal metastasis. Cancer Lett. 2023;553:215983. https://linkinghub.elsevier.com/retrieve/pii/S0304383522004700.

Article  CAS  PubMed  Google Scholar 

Yasuda T, Koiwa M, Yonemura A, Miyake K, Kariya R, Kubota S, et al. Inflammation-driven senescence-associated secretory phenotype in cancer-associated fibroblasts enhances peritoneal dissemination. Cell Rep. 2021;34:108779 http://www.ncbi.nlm.nih.gov/pubmed/33626356.

Article  CAS  PubMed  Google Scholar 

Poonpanichakul T, Shiao MSS, Jiravejchakul N, Matangkasombut P, Sirachainan E, Charoensawan V, et al. Capturing tumour heterogeneity in pre- And post-chemotherapy colorectal cancer ascites-derived cells using single-cell RNA-sequencing. Biosci Rep. 2021;41:20212093. http://www.ncbi.nlm.nih.gov/pubmed/34708245.

Article  Google Scholar 

Wintzell M, Hjerpe E, Åvall Lundqvist E, Shoshan M. Protein markers of cancer-associated fibroblasts and tumor-initiating cells reveal subpopulations in freshly isolated ovarian cancer ascites. BMC Cancer. 2012;12:359. http://www.ncbi.nlm.nih.gov/pubmed/22901285.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao Q, Yang Z, Xu S, Li X, Yang X, Jin P, et al. Heterotypic CAF-tumor spheroids promote early peritoneal metastatis of ovarian cancer. J Exp Med. 2019;216:688–703. http://www.ncbi.nlm.nih.gov/pubmed/30710055.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han Q, Huang B, Huang Z, Cai J, Gong L, Zhang Y, et al. Tumor cell‑fibroblast heterotypic aggregates in malignant ascites of patients with ovarian cancer. Int J Mol Med. 2019;44:2245–55. http://www.ncbi.nlm.nih.gov/pubmed/31638162.

CAS  PubMed  PubMed Central  Google Scholar 

Wei M, Yang T, Chen X, Wu Y, Deng X, He W, et al. Malignant ascites-derived exosomes promote proliferation and induce carcinoma-associated fibroblasts transition in peritoneal mesothelial cells. Oncotarget. 2017;8:42262–71. http://www.ncbi.nlm.nih.gov/pubmed/28178689.

Article  PubMed  PubMed Central  Google Scholar 

Kanamaru R, Ohzawa H, Miyato H, Matsumoto S, Haruta H, Kurashina K, et al. Low density neutrophils (LDN) in postoperative abdominal cavity assist the peritoneal recurrence through the production of neutrophil extracellular traps (NETs). Sci Rep. 2018;8:632 http://www.ncbi.nlm.nih.gov/pubmed/29330531.

Article  PubMed  PubMed Central  Google Scholar 

Al-Haidari AA, Algethami N, Lepsenyi M, Rahman M, Syk I, Thorlacius H. Neutrophil extracellular traps promote peritoneal metastasis of colon cancer cells. Oncotarget. 2019;10:1238–49. http://www.ncbi.nlm.nih.gov/pubmed/30815227.

Article  PubMed  PubMed Central  Google Scholar 

Koppe MJ, Nagtegaal ID, de Wilt JHW, Ceelen WP. Recent insights into the pathophysiology of omental metastases. J Surg Oncol. 2014;110:670–5. http://www.ncbi.nlm.nih.gov/pubmed/24962271.

Article  PubMed  Google Scholar 

Sorensen EW, Gerber SA, Sedlacek AL, Rybalko VY, Chan WM, Lord EM. Omental immune aggregates and tumor metastasis within the peritoneal cavity. Immunol Res. 2009;45:185–94. http://www.ncbi.nlm.nih.gov/pubmed/19253004.

Article  CAS  PubMed  Google Scholar 

Ween MP, Oehler MK, Ricciardelli C. Role of versican, hyaluronan and CD44 in ovarian cancer metastasis. Int J Mol Sci. 2011;12:1009–29. http://www.ncbi.nlm.nih.gov/pubmed/21541039.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakamura K, Sawada K, Kinose Y, Yoshimura A, Toda A, Nakatsuka E, et al. Exosomes promote ovarian cancer cell invasion through transfer of CD44 to peritoneal mesothelial cells. Mol Cancer Res. 2017;15:78–92. http://www.ncbi.nlm.nih.gov/pubmed/27758876.

Article  CAS  PubMed  Google Scholar 

Zhang R, Qi F, Shao S, Li G, Feng Y. Human colorectal cancer-derived carcinoma associated fibroblasts promote CD44-mediated adhesion of colorectal cancer cells to endothelial cells by secretion of HGF. Cancer Cell Int. 2019;19:192 http://www.ncbi.nlm.nih.gov/pubmed/31367190.

Article  PubMed  PubMed Central  Google Scholar 

Hilliard TS. The impact of mesothelin in the ovarian cancer tumor microenvironment. Cancers (Basel). 2018;10. http://www.ncbi.nlm.nih.gov/pubmed/30134520.

Baldo P, Cecco S. Amatuximab and novel agents targeting mesothelin for solid tumors. Onco Targets Ther. 2017;10:5337–53. https://www.dovepress.com/amatuximab-and-novel-agents-targeting-mesothelin-for-solid-tumors-peer-reviewed-article-OTT.

Article  PubMed  PubMed Central  Google Scholar 

Lee EK, Liu JF. Antibody-drug conjugates in gynecologic malignancies. Gynecol Oncol. 2019;153:694–702. http://www.ncbi.nlm.nih.gov/pubmed/30929824.

Article  CAS  PubMed  Google Scholar 

Torres K, Pietrzyk Ł, Plewa Z, Załuska-Patel K, Majewski M, Radzikowska E, et al. TGF-β and inflammatory blood markers in prediction of intraperitoneal adhesions. Adv Med Sci. 2018;63:220–3. http://www.ncbi.nlm.nih.gov/pubmed/29223125.

Article  PubMed  Google Scholar 

Selgas R, Bajo A, Jiménez-Heffernan JA, Sánchez-Tomero JA, Del Peso G, Aguilera A, et al. Epithelial-to-mesenchymal transition of the mesothelial cell–its role in the response of the peritoneum to dialysis. Nephrol Dial Transpl. 2006;21:ii2–7. http://www.ncbi.nlm.nih.gov/pubmed/16825254.

Article  CAS  Google Scholar 

Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986;315:1650–9. https://doi.org/10.1056/NEJM198612253152606.

Ramos C, Oehler R. Clearance of apoptotic cells by neutrophils in inflammation and cancer. Cell Death Discovery. 2024;10:26. https://doi.org/10.1038/s41420-024-01809-7.

Plikus MV, Wang X, Sinha S, Forte E, Thompson SM, Herzog EL, et al. Fibroblasts: origins, definitions, and functions in health and disease. Cell. 2021;184:3852–72. http://www.ncbi.nlm.nih.gov/pubmed/34297930.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Capobianco A, Cottone L, Monno A, Manfredi AA, Rovere‐Querini P, Rovere-Querini P. The peritoneum: healing, immunity, and diseases. J Pathol. 2017;243:137–47. http://onlinelibrary.wiley.com/doi/10.1002/path.4942/full.

Article  PubMed  Google Scholar 

Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Consensus statement. Nat Rev Cancer. 2020;20:174–86. http://www.nature.com/articles/s41568-019-0238-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Y, McAndrews KM, Kalluri R. Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat Rev Clin Oncol. 2021;18:792–804. https://www.nature.com/articles/s41571-021-00546-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Simon T, Salhia B. Cancer-associated fibroblast subpopulations with diverse and dynamic roles in the tumor microenvironment. Mol Cancer Res. 2022;20:183–92.

留言 (0)

沒有登入
gif