EV71 5’UTR interacts with 3D protein affecting replication through the AKT-mTOR pathway

Solomon T, Lewthwaite P, Perera D, et al. Virology, epidemiology, pathogenesis, and control of enterovirus 71[J]. Lancet Infect Dis. 2010;10(11):778–90.

Article  PubMed  Google Scholar 

Yi L, Lu J, Kung HF, et al. The virology and developments toward control of human enterovirus 71[J]. Crit Rev Microbiol. 2011;37(4):313–27.

Article  CAS  PubMed  Google Scholar 

Huang PN, Lin JY, Locker N, et al. Far upstream element binding protein 1 binds the internal ribosomal entry site of enterovirus 71 and enhances viral translation and viral growth[J]. Nucleic Acids Res. 2011;39(22):9633–48.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin JY, Li ML, Shih SR. Far upstream element binding protein 2 interacts with enterovirus 71 internal ribosomal entry site and negatively regulates viral translation[J]. Nucleic Acids Res. 2009;37(1):47–59.

Article  CAS  PubMed  Google Scholar 

Luo Z, Dong X, Li Y, et al. PolyC-binding protein 1 interacts with 5’-untranslated region of enterovirus 71 RNA in membrane-associated complex to facilitate viral replication[J]. PLoS ONE. 2014;9(1):e87491.

Article  PubMed  PubMed Central  Google Scholar 

Gutiérrez AL, Denova-Ocampo M, Racaniello VR, et al. Attenuating mutations in the poliovirus 5’ untranslated region alter its interaction with polypyrimidine tract-binding protein[J]. J Virol. 1997;71(5):3826–33.

Article  PubMed  PubMed Central  Google Scholar 

Evans DM, Dunn G, Minor PD, et al. Increased neurovirulence associated with a single nucleotide change in a noncoding region of the Sabin type 3 poliovaccine genome[J]. Nature. 1985;314(6011):548–50.

Article  CAS  PubMed  Google Scholar 

Guillot S, Otelea D, Delpeyroux F, et al. Point mutations involved in the attenuation/neurovirulence alternation in type 1 and 2 oral polio vaccine strains detected by site-specific polymerase chain reaction[J]. Vaccine. 1994;12(6):503–7.

Article  CAS  PubMed  Google Scholar 

Gamarnik AV, Andino R. Interactions of viral protein 3CD and poly(rC) binding protein with the 5’ untranslated region of the poliovirus genome[J]. J Virol. 2000;74(5):2219–26.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Q, Li S, Lei P, et al. ANXA2 facilitates Enterovirus 71 infection by interacting with 3D polymerase and PI4KB to assist the assembly of replication Organelles[J]. Virol Sin; 2021.

Book  Google Scholar 

Han Y, Wang L, Cui J, et al. SIRT1 inhibits EV71 genome replication and RNA translation by interfering with the viral polymerase and 5’UTR RNA[J]. J Cell Sci. 2016;129(24):4534–47.

CAS  PubMed  PubMed Central  Google Scholar 

Shi W, Ye H, Deng C, et al. A nucleobase-binding pocket in a viral RNA-dependent RNA polymerase contributes to elongation complex stability[J]. Nucleic Acids Res. 2020;48(3):1392–405.

Article  CAS  PubMed  Google Scholar 

Thompson AA, Albertini RA, Peersen OB. Stabilization of poliovirus polymerase by NTP binding and fingers-thumb interactions[J]. J Mol Biol. 2007;366(5):1459–74.

Article  CAS  PubMed  Google Scholar 

Wang T, Zhang L, Liang W, et al. Extracellular vesicles originating from autophagy mediate an antibody-resistant spread of classical swine fever virus in cell culture[J]. Autophagy. 2022;18(6):1433–49.

Gong Y, Tang N, Liu P, et al. Newcastle Disease virus degrades SIRT3 via PINK1-PRKN-dependent mitophagy to reprogram energy metabolism in infected cells[J]. Autophagy. 2022;18(7):1503–21.

Wu SY, Chen YL, Lee YR, et al. The autophagosomes containing Dengue Virus proteins and full-length genomic RNA are Infectious[J]. Viruses. 2021;13(10):2034.

Wang X, Wei Z, Cheng B, et al. ER stress promotes HBV production by enhancing utilization of the autophagosome- multivesicular body axis[J]. Hepatology. 2021;75(2):438–54.

Lee YR, Wang PS, Wang JR, et al. Enterovirus 71-induced autophagy increases viral replication and pathogenesis in a suckling mouse model[J]. J Biomed Sci. 2014;21(1):80.

Article  PubMed  PubMed Central  Google Scholar 

Liang S, Wu YS, Li DY, et al. Autophagy in viral infection and Pathogenesis[J]. Front Cell Dev Biol. 2021;9:766142.

Article  PubMed  PubMed Central  Google Scholar 

Huang SC, Chang CL, Wang PS, et al. Enterovirus 71-induced autophagy detected in vitro and in vivo promotes viral replication[J]. J Med Virol. 2009;81(7):1241–52.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fu Y, Xu W, Chen D, et al. Enterovirus 71 induces autophagy by regulating has-miR-30a expression to promote viral replication[J]. Antiviral Res. 2015;124:43–53.

Article  CAS  PubMed  Google Scholar 

Gu X, Li Y, Chen K, et al. Exosomes derived from umbilical cord mesenchymal stem cells alleviate viral myocarditis through activating AMPK/mTOR-mediated autophagy flux pathway[J]. J Cell Mol Med. 2020;24(13):7515–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin H, Li B, Liu M, et al. Nonstructural protein 6 of porcine epidemic diarrhea virus induces autophagy to promote viral replication via the PI3K/Akt/mTOR axis[J]. Vet Microbiol. 2020;244:108684.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu ZW, Zhuang ZC, Chen R, et al. Enterovirus 71 VP1 protein regulates viral replication in SH-SY5Y cells via the mTOR Autophagy Signaling Pathway[J]. Viruses. 2019;12(1):11.

张海陆 宋绍霞, 王锴 等. 肠道病毒71型EGFP标记重组病毒的构建与拯救[J] 中华实验和临床病毒学杂志. 2020;34(05):511–5.

Google Scholar 

Dumble M, Crouthamel MC, Zhang SY, et al. Discovery of novel AKT inhibitors with enhanced anti-tumor effects in combination with the MEK inhibitor[J]. PLoS ONE. 2014;9(6):e100880.

Article  PubMed  PubMed Central  Google Scholar 

Huang J, Liao Q, Ooi MH, et al. Epidemiology of recurrent hand, Foot and Mouth Disease, China, 2008–2015[J]. Emerg Infect Dis. 2018;24(3):432–42.

Article  PubMed  PubMed Central  Google Scholar 

Wang MX, Pang J. The knowledge, attitudes and practices of hand, foot, and mouth disease prevention strategies amongst parents and educators of children under 5 years amidst COVID-19 pandemic: a cross-sectional study[J]. Front Public Health. 2022;10:908004.

Article  PubMed  PubMed Central  Google Scholar 

Hu L, Zhou L, Wang P, et al. Molecular characteristics of a coxsackievirus A12 strain in Zhejiang of China, 2019[J]. Virol J. 2022;19(1):160.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng D, Chiu YW, Huang SW, et al. Genetic and Cross Neutralization Analyses of Coxsackievirus A16 circulating in Taiwan from 1998 to 2021 Suggest Dominant genotype B1 can serve as Vaccine Candidate[J]. Viruses. 2022;14(10):2306.

Li Z, Ning S, Su X, et al. Enterovirus 71 antagonizes the inhibition of the host intrinsic antiviral factor A3G[J]. Nucleic Acids Res. 2018;46(21):11514–27.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ben MM, Souii A, Harrabi M, et al. In vitro-reduced translation efficiency of coxsackievirus B3 Sabin3-like strain is correlated to impaired binding of cellular initiation factors to viral IRES RNA[J]. Curr Microbiol. 2015;70(5):756–61.

Article  Google Scholar 

Gharbi J, Almalki MA, Ben MM. The introduction of mutations in the wild type coxsackievirus B3 (CVB3) IRES RNA leads to different levels of in vitro reduced replicative and translation efficiencies[J]. PLoS ONE. 2022;17(10):e274162.

Article  Google Scholar 

Kim N, Kim MJ, Sung PS, et al. Interferon-inducible protein SCOTIN interferes with HCV replication through the autolysosomal degradation of NS5A[J]. Nat Commun. 2016;7:10631.

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Jesus N, Franco D, Paul A, et al. Mutation of a single conserved nucleotide between the cloverleaf and internal ribosome entry site attenuates poliovirus neurovirulence[J]. J Virol. 2005;79(22):14235–43.

Article  PubMed  PubMed Central  Google Scholar 

Kung CM, King CC, Lee CN, et al. Differences in replication capacity between enterovirus 71 isolates obtained from patients with encephalitis and those obtained from patients with herpangina in Taiwan[J]. J Med Virol. 2007;79(1):60–8.

Article  CAS  PubMed  Google Scholar 

Xu J, Wang F, Zhao D, et al. Sequence analysis-based characterization and identification of neurovirulence-associated variants of 36 EV71 strains from China[J]. J Med Virol. 2018;90(8):1310–7.

Article  CAS  PubMed  Google Scholar 

Yeh MT, Wang SW, Yu CK, et al. A single nucleotide in stem loop II of 5’-untranslated region contributes to virulence of enterovirus 71 in mice[J]. PLoS ONE. 2011;6(11):e27082.

Article  CAS  PubMed  PubMed Central  Google Scholar 

张海陆.肠道病毒71型3D蛋白关键氨基酸突变对病毒复制力的影响.2021.山东大学,MA thesis. https://doi.org/10.27272/d.cnki.gshdu.2021.000820.

Blanchet FP, Moris A, Nikolic DS, et al. Human immunodeficiency virus-1 inhibition of immunoamphisomes in dendritic cells impairs early innate and adaptive immune responses[J]. Immunity. 2010;32(5):654–69.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi J, Wong J, Piesik P, et al. Cleavage of sequestosome 1/p62 by an enteroviral protease results in disrupted selective autophagy and impaired NFKB signaling[J]. Autophagy. 2013;9(10):1591–603.

Article  CAS  PubMed  Google Scholar 

Mohamud Y, Qu J, Xue YC, et al. CALCOCO2/NDP52 and SQSTM1/p62 differentially regulate coxsackievirus B3 propagation[J]. Cell Death Differ. 2019;26(6):1062–76.

留言 (0)

沒有登入
gif