Metagenomic 16S rRNA analysis and predictive functional profiling revealed intrinsic organohalides respiration and bioremediation potential in mangrove sediment

Holguin G, Vazquez P, Bashan Y. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview. Biol Fertil Soils. 2001;33:265–78.

Article  CAS  Google Scholar 

Kathiresan K, Bingham BL. Biology of mangroves and mangrove ecosystems. Adv Mar Biol. 2001;40:81–251.

Article  Google Scholar 

Gomes NC, Cleary DF, Pires AC, Almeida A, Cunha A, Mendonça-Hagler LC, Smalla K. Assessing variation in bacterial composition between the rhizospheres of two mangrove tree species. Estuar Coast Shelf Sci. 2014;139:40–5.

Article  Google Scholar 

Alongi DM. Carbon cycling and storage in mangrove forests. Ann Rev Mar Sci. 2014;6(1):195–219.

Article  PubMed  Google Scholar 

Liu M, Huang H, Bao S, Tong Y. Microbial community structure of soils in Bamenwan mangrove wetland. Sci Rep. 2019;9(1):1–11.

Google Scholar 

Kathiresan K, Selvam MM. Evaluation of beneficial bacteria from mangrove soil. Bot Mar. 2006;49:86–8. https://doi.org/10.1515/BOT.2006.011.

Article  CAS  Google Scholar 

Duke NC, Meynecke JO, Dittmann S, Ellison AM, Anger K, Berger U, et al. A world without mangroves. Sci. 2007;317(5834):41–2.

Article  CAS  Google Scholar 

Ramsay MA, Swannell RP, Shipton WA, Duke NC, Hill RT. Effect of bioremediation on the microbial community in oiled mangrove sediments. Mar Pollut Bull. 2000;41(7–12):413–9.

Article  CAS  Google Scholar 

Brito EM, Duran R, Guyoneaud R, Goñi-Urriza M, De Oteyza TG, Crapez MA, Wasserman JC. A case study of in situ oil contamination in a mangrove swamp (Rio De Janeiro, Brazil). Mar Pollut Bull. 2009;58(3):418–23.

Article  CAS  PubMed  Google Scholar 

Machado LF, de Assis Leite DC, da Costa Rachid CTC, Paes JE, Martins EF, Peixoto RS, Rosado AS. Tracking mangrove oil bioremediation approaches and bacterial diversity at different depths in an in situ mesocosms system. Front Microbiol. 2019;10: 2107.

Article  PubMed  PubMed Central  Google Scholar 

Cabral L, Noronha MF, de Sousa STP, Lacerda-Júnior GV, Richter L, Fostier AH, de Oliveira VM. The metagenomic landscape of xenobiotics biodegradation in mangrove sediments. Ecotoxicol Environ Saf. 2019;179:232–40.

Article  CAS  PubMed  Google Scholar 

ATSDR, U. CERCLA priority list of hazardous substances. 2007. http://www.atsdr.cdc.gov/cercla/07list.html.

McCarty PL, Reinhard M. Biological and chemical transformations of halogenated aliphatic compounds in aquatic and terrestrial environments. In: Oremland RS, editor. The biogeochemistry of global change: radiative trace gases. New York: Chapman & Hall, Inc.; 1993. p. 839–52.

Chapter  Google Scholar 

Vogel TM, et al. Natural bioremediation of chlorinated solvents. In: Norris RD, editor., et al., Handbook of bioremediation. Boca Raton: Lewis Publishers; 1994. p. 201–25.

Google Scholar 

Jugder BE, Ertan H, Bohl S, Lee M, Marquis CP, Manefield M. Organohalide respiring bacteria and reductive dehalogenases: key tools in organohalide bioremediation. Front Microbiol. 2016;7:249.

Article  PubMed  PubMed Central  Google Scholar 

Häggblom MM, Bossert ID. Halogenated organic compounds-a global perspective. In: Dehalogenation: microbial processes and environmental applications. Boston: Springer US; 2003. p. 3–29.

Chapter  Google Scholar 

Leys D, Adrian L, Smidt H. Organohalide respiration: microbes breathing chlorinated molecules. Philosophical Trans Royal Soc B Biol Sci. 2013;368(1616):20120316.

Article  Google Scholar 

Chapelle FH. Identifying redox conditions that favour the natural attenuation of chlorinated ethenes in contaminated ground-water systems. In: Symposium on natural attenuation of chlorinated organics in ground water. 1996. p. 17–20.

Gossett JM, Zinder SH. Microbiological aspects relevant to natural attenuation of chlorinated ethenes. In: Symposium on natural attenuation of chlorinated organics in ground water. 1997. p. 10–13.

El-Sayed WS, Al-Senani SR, Elbahloul Y. Diversity of dehalorespiring bacteria and selective enrichment of aryl halides-dechlorinating consortium from sedimentary environment near an oil refinery. J Taibah Univ Sci. 2018;12(6):711–22.

Article  Google Scholar 

Zanaroli G, Balloi A, Negroni A, Daffonchio D, Young LY, Fava F. Characterization of the microbial community from the marine sediment of the Venice lagoon capable of reductive dechlorination of coplanar polychlorinated biphenyls (PCBs). J Haz Mat. 2010;178:417–26.

Article  CAS  Google Scholar 

Kjellerup BV, Naff C, Edwards SJ, Ghosh U, Baker JE, Sowers KR. Effects of activated carbon on reductive dechlorination of PCBs by organohalide respiring bacteria indigenous to sediments. Water Res. 2014;52:1–10.

Article  CAS  PubMed  Google Scholar 

Vandermeeren P, Herrmann S, Cichocka D, Busschaert P, Lievens B, Richnow HH, Springael D. Diversity of dechlorination pathways and organohalide respiring bacteria in chlorobenzene dechlorinating enrichment cultures originating from river sludge. Biodegradation. 2014;25(5):757–76.

Article  CAS  PubMed  Google Scholar 

El-Sayed WS. Characterization of a highly enriched microbial consortium reductively dechlorinating 2,3-dichlorophenol and 2,4,6-trichlorophenol and the corresponding cprA genes from river sediment. Pol J Microbiol. 2016;65(3):341.

Article  PubMed  Google Scholar 

Zhu H, Wang Y, Wang X, Luan T, Tam NF. Distribution and accumulation of polybrominated diphenyl ethers (PBDEs) in Hong Kong mangrove sediments. Sci Total Environ. 2014;468:130–9.

Article  PubMed  Google Scholar 

Pan Y, Chen J, Zhou H, Cheung SG, Tam NF. Degradation of BDE-47 in mangrove sediments under alternating anaerobic-aerobic conditions. J Haz Mat. 2019;378:120709.

Article  CAS  Google Scholar 

Robin SL, Marchand C. Polycyclic aromatic hydrocarbons (PAHs) in mangrove ecosystems: a review. Environ Pollut. 2022;311: 119959.

Article  CAS  PubMed  Google Scholar 

Ghizelini AM, Mendonça-Hagler LCS, Macrae A. Microbial diversity in Brazilian mangrove sediments: a mini review. Braz J Microbiol. 2012;43:1242–54.

Article  PubMed  PubMed Central  Google Scholar 

Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M, et al. The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinform. 2008;9:386.

Article  CAS  Google Scholar 

Cox MP, Peterson DA, Biggs PJ. SolexaQA: at-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinform. 2010;11:485.

Article  Google Scholar 

Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10: R25.

Article  PubMed  PubMed Central  Google Scholar 

Pruesse E, Quast C, Knittel K, et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007;35(21):7188–96.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 2017;67:1613.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rognes T, Flouri T, Nichols B, Quince C, Mahe F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4: e2584.

Article  PubMed  PubMed Central  Google Scholar 

Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinform. 2010;26(19):2460–1.

Article  CAS  Google Scholar 

Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinform. 2012;28(23):3150–2.

Article  CAS  Google Scholar 

Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Huttenhower C. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31(9):814–21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids res. 2012;40(D1):D109–114.

Article  CAS  PubMed  Google Scholar 

Kim SS, Eun JW, Cho HJ, Song DS, Kim CW, Kim YS, Lee SW, Kim YK, Yang J, Choi J, et al. Microbiome as a potential diagnostic and predictive biomarker in severe alcoholic hepatitis. Aliment Pharmacol Ther. 2021;53(4):540–51.

Article  CAS  PubMed  Google Scholar 

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Widdel F, Kohring GW, Mayer F. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids: III. Characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov., and Desulfonema magnum sp. nov. Arch Microbiol. 1983;134:286–94.

Article  CAS  Google Scholar 

Ismaeil M, Yoshida N, Katayama A. Identification of multiple dehalogenase genes involved in tetrachloroethene-toethene dechlorination in a Dehalococcoides-dominated enrichment culture. BioMed Res Int. 2017;2017:9191086.

Article  PubMed  PubMed Central  Google Scholar 

Atashgahi S, Lu Y, Smidt H. Overview of known organohalide-respiring bacteria – phylogenetic diversity and environmental distribution. In: Adrian L, Löffler FE, editors. Organohalide-respiring bacteria. Berlin: Springer Berlin Heidelberg; 2016. p. 63–105.

留言 (0)

沒有登入
gif