Exploring the decolorization efficiency and biodegradation mechanisms of different functional textile azo dyes by Streptomyces albidoflavus 3MGH

Chung KT. Azo dyes and human health: a review. J Environ Sci Health - Part C Environ Carcinog Ecotoxicol Rev. 2016;34:233–61.

Article  CAS  Google Scholar 

Imron M, Kurniawan SB, Titah H. Potential of bacteria isolated from diesel-contaminated seawater in diesel biodegradation. Environ Technol Innov. 2019;14:100368.

Article  Google Scholar 

Srinivasan S, Sadasivam SK. Biodegradation of textile azo dyes by textile effluent non-adapted and adapted aeromonas hydrophila. Environ Res. 2021;194:110643.

Article  CAS  PubMed  Google Scholar 

El-Bendary MA, Ezzat SM, Ewais EA, Al-Zalama MA. Optimization of spore laccase production by Bacillus amyloliquefaciens isolated from wastewater and its potential in green biodecolorization of synthetic textile dyes. Prep Biochem Biotechnol. 2021;51:16–27.

Article  CAS  PubMed  Google Scholar 

Al-Tohamy R, Sun J, Fareed MF, Kenawy E-R, Ali SS. Ecofriendly biodegradation of reactive black 5 by newly isolated Sterigmatomyces halophilus SSA1575, valued for textile azo dye wastewater processing and detoxification. Sci Rep. 2020;10:12370.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sarkar S, Banerjee A, Halder U, Biswas R, Bandopadhyay R. Degradation of synthetic azo dyes of textile industry: a sustainable approach using microbial enzymes. Water Conserv Sci Eng. 2017;2:121–31.

Article  Google Scholar 

Bankole PO, Adekunle AA, Obidi OF, Chandanshive VV, Govindwar SP. Biodegradation and detoxification of scarlet RR dye by a newly isolated filamentous fungus, Peyronellaea prosopidis. Sustainable Environ Res. 2018;28:214–22.

Article  CAS  Google Scholar 

Dixit S, Garg S. Development of an efficient recombinant bacterium and its application in the degradation of environmentally hazardous azo dyes. Int J Environ Sci Technol. 2019;16:7137–46.

Article  CAS  Google Scholar 

Guo G, Liu C, Hao J, Tian F, Ding K, Zhang C, et al. Development and characterization of a halo-thermophilic bacterial consortium for decolorization of azo dye. Chemosphere. 2021;272:129916.

Article  CAS  PubMed  Google Scholar 

Al Farraj DA, Elshikh MS, Al Khulaifi MM, Hadibarata T, Yuniarto A, Syafiuddin A. Biotransformation and Detoxification of Antraquione Dye Green 3 using halophilic Hortaea Sp. Int Biodeterior Biodegrad. 2019;140:72–7.

Article  CAS  Google Scholar 

Khataee AR, Dehghan G, Ebadi A, Zarei M, Pourhassan M. Biological treatment of a dye solution by Macroalgae Chara sp.: effect of operational parameters, intermediates identification and artificial neural network modeling. Bioresour Technol. 2010;101:2252–8.

Article  CAS  PubMed  Google Scholar 

Karim ME, Dhar K, Hossain MT. Decolorization of textile reactive dyes by bacterial monoculture and consortium screened from textile dyeing effluent. J Genetic Eng Biotechnol. 2018;16:375–80.

Article  Google Scholar 

Sane PK, Tambat S, Sontakke S, Nemade P. Visible light removal of reactive dyes using CeO2 synthesized by precipitation. J Environ Chem Eng. 2018;6:4476–89.

Article  CAS  Google Scholar 

Ong C, Lee K, Chang Y. Biodegradation of mono azo dye-reactive orange 16 by acclimatizing biomass systems under an integrated anoxic-aerobic REACT sequencing batch moving bed biofilm reactor. J Water Process Eng. 2020;36:101268.

Article  Google Scholar 

Zollinger H. Color chemistry: syntheses, properties, and applications of organic dyes and pigments. New York: VCH; 1987.

Google Scholar 

Saeed M, Nadeem R, Yousaf M. Removal of industrial pollutant (reactive Orange 122 dye) using environment-friendly sorbent Trapa bispinosa’s peel and fruit. Int J Environ Sci Technol. 2015;12:1223–34.

Article  CAS  Google Scholar 

Inchaurrondo N, Font J, Ramos CP, Haure P. Natural diatomites: efficient green catalyst for Fenton-like oxidation of orange II. Appl Catal B. 2016;181:481–94.

Article  CAS  Google Scholar 

Ferreira SAD, Donadia JF, Gonçalves GR, Teixeira AL, Freitas MBJG, Fernandes AAR, et al. Photocatalytic performance of granite waste in the decolorization and degradation of reactive orange 122. J Environ Chem Eng. 2019;7:103144.

Article  CAS  Google Scholar 

de Castro LEN, Meurer EC, Alves HJ, dos Santos MAR, Vasques E, de Colpini CLMS. Photocatalytic degradation of textile dye orange-122 via electrospray mass spectrometry. Braz Arch Biol Technol. 2020;63:e20180573.

Article  Google Scholar 

Colpini LMS, Lenzi GG, Urio MB, Kochepka DM, Alves HJ. Photodiscoloration of textile reactive dyes on Ni/TiO2 prepared by the impregnation method: effect of calcination temperature. J Environ Chem Eng. 2014;2:2365–71.

Article  CAS  Google Scholar 

Haley TJ. Benzidine Revisited: a review of the literature and problems associated with the use of benzidine and its congeners. Clin Toxicol. 1975. https://doi.org/10.3109/15563657508988044.

Article  PubMed  Google Scholar 

Golka K, Kopps S, Myslak ZW. Carcinogenicity of azo colorants: influence of solubility and bioavailability. Toxicol Lett. 2004;151:203–10.

Article  CAS  PubMed  Google Scholar 

Kumar K, Devi SS, Krishnamurthi K, Dutta D, Chakrabarti T. Decolorisation and detoxification of Direct Blue-15 by a bacterial consortium. Bioresour Technol. 2007;98:3168–71.

Article  CAS  PubMed  Google Scholar 

Hernández-Zamora M, Martínez-Jerónimo F. Exposure to the azo dye direct blue 15 produces toxic effects on microalgae, cladocerans, and zebrafish embryos. Ecotoxicology. 2019;28:890–902.

Article  PubMed  Google Scholar 

Sun J-H, Shi S-H, Lee Y-F, Sun S-P. Fenton oxidative decolorization of the azo dye Direct Blue 15 in aqueous solution. Chem Eng J. 2009;155:680–3.

Article  CAS  Google Scholar 

Bafana A, Devi SS, Krishnamurthi K, Chakrabarti T. Kinetics of decolourisation and biotransformation of direct black 38 by C. Hominis and P. Stutzeri. Appl Microbiol Biotechnol. 2007;74:1145–52.

Article  CAS  PubMed  Google Scholar 

Bafana A, Krishnamurthi K, Devi SS, Chakrabarti T. Biological decolourization of C.I. Direct Black 38 by E. Gallinarum. J Hazard Mater. 2008;157:187–93.

Article  CAS  PubMed  Google Scholar 

Buntić AV, Pavlović MD, Antonović DG, Šiler-Marinković SS, Dimitrijević-Branković SI. A treatment of wastewater containing basic dyes by the use of new strain streptomyces microflavus CKS6. J Clean Prod. 2017;148:347–54.

Article  Google Scholar 

Remenár M, Karelová E, Harichová J, Zámocký M, Krčová K, Ferianc P. Actinobacteria occurrence and their metabolic characteristics in the nickel-contaminated soil sample. Biologia. 2014;69:1453–63.

Article  Google Scholar 

Garg VK, Amita M, Kumar R, Gupta R. Basic dye (methylene blue) removal from simulated wastewater by adsorption using Indian Rosewood sawdust: a timber industry waste. Dyes Pigm. 2004;63:243–50.

Article  CAS  Google Scholar 

Hadibarata T, Nor NM. Decolorization and degradation mechanism of Amaranth by Polyporus sp. S133. Bioprocess Biosyst Eng. 2014;37:1879–85.

Article  CAS  PubMed  Google Scholar 

Lai CY, Wu CH, Meng CT, Lin CW. Decolorization of azo dye and generation of electricity by microbial fuel cell with laccase-producing white-rot fungus on cathode. Appl Energy. 2017;188:392–8.

Article  CAS  Google Scholar 

Tan L, He M, Song L, Fu X, Shi S. Aerobic decolorization, degradation and detoxification of azo dyes by a newly isolated salt-tolerant yeast Scheffersomyces Spartinae TLHS-SF1. Bioresour Technol. 2016;203:287–94.

Article  CAS  PubMed  Google Scholar 

El Hassani K, Kalnina D, Turks M, Beakou BH, Anouar A. Enhanced degradation of an azo dye by catalytic ozonation over Ni-containing layered double hydroxide nanocatalyst. Sep Purif Technol. 2019;210:764–74.

Article  Google Scholar 

Hadibarata T, Syafiuddin A, Al-Dhabaan FA, Elshikh MS, Rubiyatno. Biodegradation of mordant orange-1 using newly isolated strain Trichoderma harzianum RY44 and its metabolite appraisal. Bioprocess Biosyst Eng. 2018;41:621–32.

Ikram M, Moeen S, Haider A, Ul-Hamid A, Alhummiany H, Somaily HH, et al. Experimental and computational study of annealed nickel sulfide quantum dots for catalytic and antibacterial activity. Nano Mater Sci. 2023. https://doi.org/10.1016/j.nanoms.2023.11.007.

留言 (0)

沒有登入
gif