Coexistence of plasmid-mediated quinolone resistance (PMQR) and extended-spectrum beta-lactamase (ESBL) genes among clinical Pseudomonas aeruginosa isolates in Egypt

Labovska S. Pseudomonas aeruginosa as a cause of nosocomial infection. Pseudomonas aeruginosa Biofilm formation, infections and treatments. Croatia: IntechOpen Open Access Books; 2021. https://doi.org/10.5772/intechopen.95908.

Chapter  Google Scholar 

Moradali MF, Ghods S, Rehm BH. Pseudomonas aeruginosa Lifestyle: a paradigm for Adaptation, Survival, and persistence. Front Cell Infect Microbiol. 2017. https://doi.org/10.3389/fcimb.2017.00039. 7:39. Published 2017 Feb 15.

Article  PubMed  PubMed Central  Google Scholar 

Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318–27. https://doi.org/10.1016/S1473-3099(17)30753-3.

Article  PubMed  Google Scholar 

Al-Orphaly M, Hadi HA, Eltayeb FK et al. Epidemiology of Multidrug-Resistant Pseudomonas aeruginosa in the Middle East and North Africa Region. mSphere. 2021;6(3): e00202-21. Published 2021 May 19. https://doi.org/10.1128/mSphere.00202-21.

Pham TDM, Ziora ZM, Blaskovich MAT. Quinolone antibiotics. Med chem comm. 2019;10(10):1719–39. https://doi.org/10.1039/c9md00120d. Published 2019 Jun 28.

Article  CAS  Google Scholar 

Martínez-Martínez L, Pascual A, Jacoby GA. Quinolone resistance from a transferable plasmid. Lancet. 1998;351(9105):797–9. https://doi.org/10.1016/S0140-6736(97)07322-4.

Article  PubMed  Google Scholar 

Rodríguez-Martínez JM, Machuca J, Cano ME, Calvo J, Martínez-Martínez L, Pascual A. Plasmid-mediated quinolone resistance: two decades on. Drug Resist Update. 2016;29:13–29. https://doi.org/10.1016/j.drup.2016.09.001.

Article  Google Scholar 

Robicsek A, Strahilevitz J, Jacoby GA, et al. Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med. 2006;12(1):83–8. https://doi.org/10.1038/nm1347.

Article  CAS  PubMed  Google Scholar 

Yamane K, Wachino J, Suzuki S, et al. New plasmid-mediated fluoroquinolone efflux pump, QepA, found in an Escherichia coli clinical isolate. Antimicrob Agents Chemother. 2007;51(9):3354–60. https://doi.org/10.1128/AAC.00339-07.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Castanheira M, Simner PJ, Bradford PA. Extended-spectrum β-lactamases: an update on their characteristics, epidemiology and detection. JAC Antimicrob Resist. 2021;3(3):dlab092. https://doi.org/10.1093/jacamr/dlab092. Published 2021 Jul 16.

Article  PubMed  PubMed Central  Google Scholar 

Hosu MC, Vasaikar SD, Okuthe GE, et al. Detection of extended spectrum beta-lactamase genes in Pseudomonas aeruginosa isolated from patients in rural Eastern Cape Province, South Africa. Sci Rep. 2021;11:7110. https://doi.org/10.1038/s41598-021-86570-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kotb DN, Mahdy WK, Mahmoud MS, Khairy RMM. Impact of co-existence of PMQR genes and QRDR mutations on fluoroquinolones resistance in Enterobacteriaceae strains isolated from community and hospital acquired UTIs. BMC Infect Dis. 2019;19(1):979. Published 2019 Nov 21. https://doi.org/10.1186/s12879-019-4606-y.

Abdulkareem MM, Abdulrahman MA, Yassin NA. Molecular detection of plasmid-mediated quinolone resistance genes among clinical isolates of Klebsiella pneumoniae during Covid-19 pandemic. Pharmacia. 2023;70(1):225–31. https://doi.org/10.3897/pharmacia.70.e90610.

Article  CAS  Google Scholar 

Azargun R, Sadeghi MR, Soroush Barhaghi MH, et al. The prevalence of plasmid-mediated quinolone resistance and ESBL-production in Enterobacteriaceae isolated from urinary tract infections. Infect Drug Resist. 2018;11:1007–14. https://doi.org/10.2147/IDR.S160720. Published 2018 Jul 23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bergey DH. David Hendricks), 1860–1937. Bergey’s Manual of determinative bacteriology: a key for the identification of organisms of the Class Schizomycetes. Baltimore: The Williams & Wilkins Company; 1923.

Google Scholar 

Clinical and Laboratory Standards Institute. M100: performance standards for antimicrobial susceptibility testing. 31st ed. Washington: CLSI; 2021.

Google Scholar 

Dashti AA, Jadaon MM, Abdulsamad AM, Dashti HM. Heat treatment of Bacteria: a simple method of DNA extraction for molecular techniques. KMJ-Kuwait Med J. 2009;41(2):117–22.

Google Scholar 

Cattoir V, Poirel L, Rotimi V, et al. Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J Antimicrob Chemother. 2007;60(2):394–7. https://doi.org/10.1093/jac/dkm204.

Article  CAS  PubMed  Google Scholar 

Cruz GR, Radice M, Sennati S, et al. Prevalence of plasmid-mediated quinolone resistance determinants among oxyiminocephalosporin-resistant Enterobacteriaceae in Argentina. Mem Inst Oswaldo Cruz. 2013;108(7):924–7. https://doi.org/10.1590/0074-0276130084.

Article  PubMed  PubMed Central  Google Scholar 

El-Badawy MF, Alrobaian MM, Shohayeb MM, Abdelwahab SF. Investigation of six plasmid-mediated quinolone resistance genes among clinical isolates of pseudomonas: a genotypic study in Saudi Arabia. Infect Drug Resist. 2019;12:915–23. https://doi.org/10.2147/IDR.S203288. Published 2019 Apr 29.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang M, Guo Q, Xu X, et al. New plasmid-mediated quinolone resistance gene, qnrC, found in a clinical isolate of Proteus mirabilis. Antimicrob Agents Chemother. 2009;53(5):1892–7. https://doi.org/10.1128/AAC.01400-08.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen X, Zhang W, Pan W, et al. Prevalence of qnr, aac (6')-Ib-cr, qepA, and oqxAB in Escherichia coli isolates from humans, animals, and Environment. Antimicrob Agents Chemother. 2012;56(6):3423–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tofteland S, Haldorsen B, Dahl KH, et al. Effects of phenotype and genotype on methods for detection of extended-spectrum-beta-lactamase-producing clinical isolates of Escherichia coli and Klebsiella pneumoniae in Norway. J Clin Microbiol. 2007;45(1):199–205. https://doi.org/10.1128/JCM.01319-06.

Article  CAS  PubMed  Google Scholar 

Nüesch-Inderbinen MT, Hächler H, Kayser FH. Detection of genes coding for extended-spectrum SHV beta-lactamases in clinical isolates by a molecular genetic method, and comparison with the E test. Eur J Clin Microbiol Infect Dis. 1996;15(5):398–402. https://doi.org/10.1007/BF01690097.

Article  PubMed  Google Scholar 

Saladin M, Cao VT, Lambert T, et al. Diversity of CTX-M beta-lactamases and their promoter regions from Enterobacteriaceae isolated in three parisian hospitals. FEMS Microbiol Lett. 2002;209(2):161–8. https://doi.org/10.1111/j.1574-6968.2002.tb11126.x.

Article  CAS  PubMed  Google Scholar 

Mohamed ES, Khairy RMM, Abdelrahim SS. Prevalence and molecular characteristics of ESBL and AmpC β -lactamase producing Enterobacteriaceae strains isolated from UTIs in Egypt. Antimicrob Resist Infect Control. 2020;9(1):198. https://doi.org/10.1186/s13756-020-00856-w. Published 2020 Dec 10.

Article  PubMed  PubMed Central  Google Scholar 

Masoud SM, Abd El-Baky RM, Aly SA, Ibrahem RA. Co-existence of certain ESBLs, MBLs and plasmid mediated Quinolone Resistance genes among MDR E. Coli isolated from different clinical specimens in Egypt. Antibiot (Basel). 2021;10(7):835. https://doi.org/10.3390/antibiotics10070835. Published 2021 Jul 9.

Article  CAS  Google Scholar 

Saki M, Sheikh AF, Seyed-Mohammadi S et al. Publisher Correction: Occurrence of plasmid–mediated quinolone resistance genes in Pseudomonas aeruginosa strains isolated from clinical specimens in southwest Iran: a multicentral study. Sci Rep. 2022;12(1):3817. Published 2022 Mar 3. https://doi.org/10.1038/s41598-022-07352-8.

Farhan SM, Ibrahim RA, Mahran KM, Hetta HF, Abd El-Baky RM. Antimicrobial resistance pattern and molecular genetic distribution of metallo-β-lactamases producing Pseudomonas aeruginosa isolated from hospitals in Minia, Egypt. Infect Drug Resist. 2019;12:2125–33. https://doi.org/10.2147/IDR.S198373. Published 2019 Jul 16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saleh MA, Balboula MM. Plasmid mediated quinolone resistance determinants among nosocomial clinical Pseudomonas aeruginosa isolates. Int J Curr Microbiol App Sci. 2017;6:42–50.

Article  CAS  Google Scholar 

Abdel-Rhman SH, Rizk DE. Serotypes, antibiogram and genetic relatedness of Pseudomonas aeruginosa isolates from urinary tract infections at urology and Nephrology Center, Mansoura, Egypt. Adv Microbiol. 2018;8(08):625.

Article  CAS  Google Scholar 

El-Mahdy R, El-Kannishy G. Virulence factors of Carbapenem-Resistant Pseudomonas aeruginosa in Hospital-Acquired infections in Mansoura, Egypt. Infect Drug Resist. 2019;12:3455–61. https://doi.org/10.2147/IDR.S222329. Published 2019 Nov 7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brzozowski M, Krukowska Ż, Galant K, et al. Genotypic characterisation and antimicrobial resistance of Pseudomonas aeruginosa strains isolated from patients of different hospitals and medical centres in Poland. BMC Infect Dis. 2020;20:693. https://doi.org/10.1186/s12879-020-05404-w.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Araujo BF, Ferreira ML, de Campos PA et al. Clinical and Molecular Epidemiology of Multidrug-Resistant P. aeruginosa Carrying aac (6’)-Ib-cr, qnrS1 and blaSPM Genes in Brazil. 2016;11(5): e0155914.

Akingbade O, Balogun S, Ojo D, et al. Plasmid profile analysis of multidrug resistant Pseudomonas aeruginosa isolated from wound infections in South West, Nigeria. World Appl Sci J. 2012;20(6):766–75.

CAS  Google Scholar 

Patil S, Chen X, Dong S, Mai H, Lopes BS, Liu S, Wen F. Resistance genomics and molecular epidemiology of high-risk clones of ESBL-producing Pseudomonas aeruginosa in young children. Front Cell Infect Microbiol. 2023;13:1168096. https://doi.org/10.3389/fcimb.2023.1168096.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Molapour A, Peymani A, Saffarain P, Habibollah-Pourzereshki N, Rashvand P. Plasmid-mediated Quinolone Resistance in Pseudomonas aeruginosa isolated from burn patients in Tehran, Iran. Infect Disord Drug Targets. 2020;20(1):49–55. https://doi.org/10.2174/1871526519666190206205521.

Article  CAS  PubMed  Google Scholar 

Abbas HA, El-Ganiny AM, Kamel HA. Phenotypic and genotypic detection of antibiotic resistance of Pseudomonas aeruginosa isolated from urinary tract infections. Afr Health Sci. 2018;18(1):11–

留言 (0)

沒有登入
gif