Comparison of pediatric lens scattered dose measurements between axial 40-mm and helical 160-mm detector width computed tomography scan modes

Shirota G, Maeda E, Namiki Y et al (2017) Pediatric 320-row cardiac computed tomography using electrocardiogram-gated model-based full iterative reconstruction. Pediatr Radiol 47:1463–1470

Article  PubMed  PubMed Central  Google Scholar 

Maeda E, Shirota G, Shibata E et al (2020) Comparison of image quality between synthetic and patients’ electrocardiogram-gated 320-row pediatric cardiac computed tomography. Pediatr Radiol 50:180–187

Article  PubMed  Google Scholar 

Zhu Y, Pi Z, Zhou H et al (2021) Imaging pediatric acute head trauma using 100-kVp low dose CT with adaptive statistical iterative reconstruction (ASIR-V) in single rotation on a 16 cm wide-detector CT. J Xray Sci Technol 29:517–527

PubMed  Google Scholar 

Sun J, Okerlund D, Cao Y et al (2020) Further improving image quality of Cardiovascular computed tomography angiography for children with high heart rates using second-generation motion correction algorithm. J Comput Assist Tomogr 44:790–795

Article  PubMed  Google Scholar 

Strauss KJ, Somasundaram E, Sengupta D et al (2019) Radiation dose for pediatric CT: comparison of Pediatric versus Adult Imaging facilities. Radiology 291:158–167

Article  PubMed  Google Scholar 

Greenwood TJ, Lopez-Costa RI, Rhoades PD et al (2015) CT dose optimization in pediatric radiology: a multiyear effort to preserve the benefits of imaging while reducing the risks. Radiographics 35:1539–1554

Article  PubMed  Google Scholar 

Brenner D, Elliston C, Hall E, Berdon W (2001) Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol 176:289–296

Article  CAS  PubMed  Google Scholar 

Miglioretti DL, Johnson E, Williams A et al (2013) The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr 167:700–707

Article  PubMed  PubMed Central  Google Scholar 

Pearce MS, Salotti JA, Little MP et al (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380:499–505

Article  PubMed  PubMed Central  Google Scholar 

Mathews JD, Forsythe AV, Brady Z et al (2013) Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million australians. BMJ 346:f2360

Article  PubMed  PubMed Central  Google Scholar 

Masuda T, Funama Y, Nakaura T et al (2019) Usefulness of diluted contrast medium for test-scanning of infants scheduled for contrast-enhanced cardiovascular computed tomography angiography. Br J Radiol 92:20180572

Article  PubMed  Google Scholar 

Masuda T, Funama Y, Nakaura T et al (2018) Radiation Dose Reduction with a low-tube voltage technique for Pediatric chest computed Tomographic Angiography based on the contrast-to-noise ratio index. Can Assoc Radiol J 69:390–396

Article  PubMed  Google Scholar 

Sorantin E, Riccabona M, Stücklschweiger G et al (2013) Experience with volumetric (320 rows) pediatric CT. Eur Radiol 82:1091–1097

Article  CAS  Google Scholar 

Kroft LJ, Roelofs JJ, Geleijns J (2010) Scan time and patient dose for thoracic imaging in neonates and small children using axial volumetric 320-detector row CT compared to helical 64-, 32-, and 16- detector row CT acquisitions. Pediatr Radiol 40:294–300

Article  PubMed  Google Scholar 

Zhu Y, Li Z, Ma J et al (2018) Imaging the infant chest without sedation: feasibility of using single axial rotation with 16-cm wide-detector CT. Radiology 286:279–285

Article  PubMed  Google Scholar 

Hara T, Niwa S, Urikura A et al (2019) Assessment of longitudinal beam property and contrast uniformity for 256- and 320-row area detector computed tomography scanners in the 160-mm nonhelical volume-acquisition mode. J Appl Clin Med Phys 20:164–170

Article  PubMed  PubMed Central  Google Scholar 

Harbron RW, Ainsbury EA, Barnard SGR et al (2019) Radiation dose to the lens from CT of the head in young people. Clin Radiol 74:816e819

Article  Google Scholar 

Behrens R (2012) Air Kerma to Hp(3) conversion coefficients for a new cylinder phantom for photon reference radiation qualities. Radiat Prot Dosim 151:450–455

Article  CAS  Google Scholar 

Mori H (2016) Scattered X-ray energy data from integrated multi-filter personal dosemeters worn by international radiology staff. Radiat Prot Dosim 171:365–369

Google Scholar 

Cohnen M, Poll LJ, Puettmann C et al (2003) Effective doses in standard protocols for multi-slice CT scanning. Eur J Radiol 13:1148–1153

Article  Google Scholar 

Theocharopoulos N, Damilakis J, Perisinakis K, Gourtsoyiannis N (2007) Energy imparted-based estimates of the effect of z overscanning on adult and pediatric patient effective doses from multi-slice computed tomography. Med Phys 34:1139–1152

Article  PubMed  Google Scholar 

Tzedakis A, Damilakis J, Perisinakis K et al (2005) The effect of z overscanning on patient effective dose from multidetector helical computed tomography examinations. Med Phys 32:1621–1629

Article  CAS  PubMed  Google Scholar 

Tzedakis A, Perisinakis K, Raissaki M, Damilakis J (2006) The effect of z overscanning on radiation burden of pediatric patients undergoing head CT with multidetector scanners: a Monte Carlo study. Med Phys 33:2472–2478

Article  PubMed  Google Scholar 

Tzedakis A, Damilakis J, Perisinakis K, Karantanas A et al (2007) Influence of z overscanning on normalized effective doses calculated for pediatric patients undergoing multidetector CT examinations. Med Phys 34:1163–1175

Article  PubMed  Google Scholar 

Fuchs TO, Kachelriess M, Kalender WA (2000) System performance of multislice spiral computed tomography. IEEE Eng Med Biol Mag 19:63–70

Article  CAS  PubMed  Google Scholar 

Taguchi K, Aradate H (1998) Algorithm for image reconstruction in multi-slice helical CT. Med Phys 25:550–561

Article  CAS  PubMed  Google Scholar 

Urikura A, Hara T, Yoshida T et al (2019) Overranging and overbeaming measurement in area detector computed tomography: a method for simultaneous measurement in volume helical acquisition. J Appl Clin Med Phys 20:160–165

Article  PubMed  PubMed Central  Google Scholar 

Ainsbury EA, Dalke C, Hamada N et al (2021) Radiation-induced lens opacities: Epidemiological, clinical and experimental evidence, methodological issues, research gaps and strategy. Environ Int 146:106213

Article  PubMed  Google Scholar 

Brown NP (1997) The lens is more sensitive to radiation than we had believed. Br Ophthalmol 81:257

Article  CAS  Google Scholar 

Ainsbury EA, Bouffler SD, Dörr W et al (2009) Radiation cataractogenesis: a review of recent studies. Radiat Res 172:1–9

Article  CAS  PubMed  Google Scholar 

Vano E, Kleiman NJ, Duran A et al (2010) Radiation cataract risk in interventional cardiology personnel. Radiat Res 174:490–495

Article  CAS  PubMed  Google Scholar 

Kleiman NJ (2012) Radiation cataract. Ann ICRP 41:80–97

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif