Amygdala volumes and associations with socio-emotional competencies in preterm youth: cross-sectional and longitudinal data

Sripada, K. et al. Trajectories of brain development in school-age children born preterm with very low birth weight. Sci. Rep. 8, 1–14 (2018).

Article  CAS  Google Scholar 

Nosarti, C. et al. Preterm birth and structural brain alterations in early adulthood. Neuroimage Clin. 6, 180–191 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Lammertink, F. et al. Early-life stress exposure and large-scale covariance brain networks in extremely preterm-born infants. Transl. Psychiatry 12, 1–9 (2022).

Google Scholar 

Arpi, E. & Ferrari, F. Preterm birth and behaviour problems in infants and preschool-age children: a review of the recent literature. Dev. Med Child Neurol. 55, 788–796 (2013).

Article  PubMed  Google Scholar 

Cheong, J. L. et al. Association Between Moderate and Late Preterm Birth and Neurodevelopment and Social-Emotional Development at Age 2 Years. JAMA Pediatr. 171, e164805 (2017).

Article  PubMed  Google Scholar 

della Longa, L., Nosarti, C. & Farroni, T. Emotion Recognition in Preterm and Full-Term School-Age Children. Int J. Environ. Res Public Health 19, 6507 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Siffredi, V. et al. Large-scale brain network dynamics in very preterm children and relationship with socio-emotional outcomes: an exploratory study. Pediatric Res. 1–9 (2022) https://doi.org/10.1038/s41390-022-02342-y.

Montagna, A. & Nosarti, C. Socio-Emotional Development Following Very Preterm Birth: Pathways to Psychopathology. Front. Psychol. 7, 80 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Zubiaurre-Elorza, L. et al. Cortical thickness and behavior abnormalities in children born preterm. PLoS One 7, e42148 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Healy, E. et al. Preterm birth and adolescent social functioning–alterations in emotion-processing brain areas. J. Pediatr. 163, 1596–1604 (2013).

Article  PubMed  Google Scholar 

Rogers, C. E. et al. Regional cerebral development at term relates to school-age social–emotional development in very preterm children. J. Am. Acad. Child Adolesc. Psychiatry 51, 181–191 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Pavlova, M. A. et al. Social cognition in individuals born preterm. Sci. Rep. 11, 1–11 (2021).

Article  Google Scholar 

Mueller, M. et al. Amygdala subnuclei volumes, functional connectivity, and social–emotional outcomes in children born very preterm. Cereb. Cortex Commun. 3, tgac028 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Guadagno, A., Belliveau, C., Mechawar, N. & Walker, C. D. Effects of Early Life Stress on the Developing Basolateral Amygdala-Prefrontal Cortex Circuit: The Emerging Role of Local Inhibition and Perineuronal Nets. Front Hum. Neurosci. 15, 484 (2021).

Article  Google Scholar 

Mareckova, K. et al. Prenatal stress and its association with amygdala-related structural covariance patterns in youth. Neuroimage Clin. 34, 102976 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Hölzel, B. K. et al. Stress reduction correlates with structural changes in the amygdala. Soc. Cogn. Affect Neurosci. 5, 11–17 (2010).

Article  PubMed  Google Scholar 

Nordahl, C. W. et al. Increased rate of amygdala growth in children aged 2 to 4 years with autism spectrum disorders: A longitudinal study. Arch. Gen. Psychiatry 69, 53–61 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Smith, K. E. & Pollak, S. D. Early life stress and development: potential mechanisms for adverse outcomes. J. Neurodev. Disord. 12, 1–15 (2020).

Article  Google Scholar 

Zhang, X. et al. Stress-induced functional alterations in amygdala: Implications for neuropsychiatric diseases. Front. Neurosci. 12, 367 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Andolina, D. & Borreca, A. The Key Role of the Amygdala in Stress. In The Amygdala - Where Emotions Shape Perception, Learning and Memories. (InTech, 2017).

Schmitz-Koep, B. et al. Decreased amygdala volume in adults after premature birth. Sci. Rep. 11, 1–11 (2021).

Article  Google Scholar 

Kanel, D. et al. Neonatal amygdala resting-state functional connectivity and socio-emotional development in very preterm children. Brain Commun. 4, fcac009 (2022).

Article  PubMed  PubMed Central  Google Scholar 

DeMaster, D. et al. Nurturing the preterm infant brain: leveraging neuroplasticity to improve neurobehavioral outcomes. Pediatr. Res. 85, 166–175 (2018).

Article  PubMed  Google Scholar 

Rogers, C. E. et al. Neonatal Amygdala Functional Connectivity at Rest in Healthy and Preterm Infants and Early Internalizing Symptoms. J. Am. Acad. Child Adolesc. Psychiatry 56, 157–166 (2017).

Article  PubMed  Google Scholar 

Johns, C. B., Lacadie, C., Vohr, B., Ment, L. R. & Scheinost, D. Amygdala functional connectivity is associated with social impairments in preterm born young adults. Neuroimage Clin. 21, 101626 (2019).

Article  PubMed  Google Scholar 

Papini, C. et al. Altered resting-state functional connectivity in emotion-processing brain regions in adults who were born very preterm. Psychol. Med. 46, 3025–3039 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eccles, J. S. The development of children ages 6 to 14. Future Child. 9, 30–44 (1999).

Article  CAS  PubMed  Google Scholar 

Siffredi, V. et al. Improving executive, behavioural and socio-emotional competences in very preterm young adolescents through a mindfulness-based intervention: study protocol and feasibility. medRxiv https://doi.org/10.1101/2021.01.19.21250087 (2021).

Largo, R. H. et al. Significance of prenatal, perinatal and postnatal factors in the development of AGA preterm infants at five to seven years. Dev. Med. Child Neurol. 31, 440–456 (1989).

Article  CAS  PubMed  Google Scholar 

Reynolds, C. R., Kamphaus, R. W. & Rosenthal, B. L. Applications of the Kaufman Assessment Battery for Children (K-ABC) in neuropsychological assessment. In Handbook of clinical child neuropsychology, 3rd ed. (Springe, 2009).

Wechsler, D. Wechsler Intelligence Scale for Children (5th ed.) (PsychCorp, 2014).

Kahalley, L. S., Winter-Greenberg, A., Stancel, H., Ris, M. D. & Gragert, M. Utility of the General Ability Index (GAI) and Cognitive Proficiency Index (CPI) with survivors of pediatric brain tumors: Comparison to Full Scale IQ and premorbid IQ estimates. J. Clin. Exp. Neuropsychol. 38, 1065–1076 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Lenhard, A. & Daseking, M. Accounting for Intraindividual Profiles in the Wechsler Intelligence Scales Improves the Prediction of School Performance. Child. 9, 1635 (2022).

Article  Google Scholar 

Korkman, M., Kirk, U. & Kemp, S. NEPSY-Second Edition (NEPSY-II). J. Psychoeduc. Assess. 28, 175–182 (2007).

Google Scholar 

Goodman, R. The Strengths and Difficulties Questionnaire: A Research Note. J. Child Psychol. Psychiatry 38, 581–586 (1997).

Article  CAS  PubMed  Google Scholar 

Goodman, R. Psychometric Properties of the Strengths and Difficulties Questionnaire. J. Am. Acad. Child Adolesc. Psychiatry 40, 1337–1345 (2001).

Article  CAS  PubMed  Google Scholar 

Gioia, G. A., Isquith, P. K., Guy, S. C. & Kenworthy, L. Overview & What’s New Behavior Rating Inventory of Executive Function, 2nd ed. (BRIEF ® 2) Test Materials. BRIEF2 Professional Manual with Fast Guide (2018).

Saygin, Z. M. et al. High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: manual segmentation to automatic atlas. Neuroimage 155, 370–382 (2017).

Article  CAS  PubMed  Google Scholar 

Backhausen, L. L., Herting, M. M., Tamnes, C. K. & Vetter, N. C. Best Practices in Structural Neuroimaging of Neurodevelopmental Disorders. Neuropsychol. Rev. 32, 400–418 (2022).

Article  PubMed  Google Scholar 

Gousias, I. S. et al. Magnetic resonance imaging of the newborn brain: Manual segmentation of labelled atlases in term-born and preterm infants. Neuroimage 62, 1499–1509 (2012).

Article  PubMed  Google Scholar 

Entis, J. J., Doerga, P., Feldman Barrett, L. & Dickerson, B. C. A reliable protocol for the manual segmentation of the human amygdala and its subregions using ultra-high resolution MRI. Neuroimage 60, 1226–1235 (2012).

Article  PubMed  Google Scholar 

Gui, L. et al. Morphology-driven automatic segmentation of MR images of the neonatal brain. Med. Image Anal. 16, 1565–1579 (2012).

Article  PubMed  Google Scholar 

Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).

Article  Google Scholar 

Allaire, J. RStudio: integrated development environment for R. Boston, MA, 770, 165–171 (2012).

R Core Team, R. R: A language and environment for statistical computing. https://www.R-project.org/ (2013)

Kebets, V. et al. Somatosensory-Motor Dysconnectivity Spans Multiple Transdiagnostic Dimensions of Psychopathology. Biol. Psychiatry 86, 779–791 (2019).

Article  PubMed  Google Scholar 

Zöller, D. et al. Large-Scale Brain Network Dynamics Provide a Measure of Psychosis and Anxiety in 22q11.2 Deletion Syndrome. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 4, 881–892 (2019).

PubMed  Google Scholar 

McIntosh, A. R. & Lobaugh, N. J. Partial least squares analysis of neuroimaging data: applications and advances. Neuroimage 23, S250–S263 (2004).

Article  PubMed 

留言 (0)

沒有登入
gif