Rapid advances enabling high-performance inverted perovskite solar cells

Green, M. A. et al. Solar cell efficiency tables (version 62). Prog. Photos. Res. Appl. 31, 651–663 (2023).

Article  Google Scholar 

Jiang, Q. et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2, 16177 (2017).

Article  CAS  Google Scholar 

Anaraki, E. H. et al. Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy Environ. Sci. 9, 3128–3134 (2016).

Article  CAS  Google Scholar 

Yoo, J. J. et al. Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021).

Article  CAS  PubMed  Google Scholar 

Park, S. Y. & Zhu, K. Advances in SnO2 for efficient and stable n–i–p perovskite solar cells. Adv. Mater. 34, 2110438 (2022).

Article  CAS  Google Scholar 

Jiang, Q., Zhang, X. & You, J. SnO2: a wonderful electron transport layer for perovskite solar cells. Small 14, 1801154 (2018).

Article  Google Scholar 

Ren, G. et al. Strategies of modifying spiro-OMeTAD materials for perovskite solar cells: a review. J. Mater. Chem. A 9, 4589–4625 (2021).

Article  CAS  Google Scholar 

Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013).

Article  CAS  PubMed  Google Scholar 

Lin, X. et al. Efficiency progress of inverted perovskite solar cells. Energy Environ. Sci. 13, 3823–3847 (2020).

Article  CAS  Google Scholar 

Li, D. et al. Recent progress of inverted organic–inorganic halide perovskite solar cells. J. Energy Chem. 79, 168–191 (2023).

Article  CAS  Google Scholar 

Li, B. & Zhang, W. Improving the stability of inverted perovskite solar cells towards commercialization. Commun. Mater. 3, 65 (2022).

Article  Google Scholar 

Li, X. et al. Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 375, 434–437 (2022).

Article  CAS  PubMed  Google Scholar 

Jiang, Q. et al. Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611, 278–283 (2022).

Article  CAS  PubMed  Google Scholar 

Chen, H. et al. Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nat. Photon. 16, 352–358 (2022).

Article  CAS  Google Scholar 

Al-Ashouri, A. et al. Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ. Sci. 12, 3356–3369 (2019).

Article  CAS  Google Scholar 

Li, F. et al. Regulating surface termination for efficient inverted perovskite solar cells with greater than 23% efficiency. J. Am. Chem. Soc. 142, 20134–20142 (2020).

Article  CAS  PubMed  Google Scholar 

Luo, D., Su, R., Zhang, W., Gong, Q. & Zhu, R. Minimizing non-radiative recombination losses in perovskite solar cells. Nat. Rev. Mater. 5, 44–60 (2020).

Article  CAS  Google Scholar 

Jeng, J.-Y. et al. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 25, 3727–3732 (2013).

Article  CAS  PubMed  Google Scholar 

Zheng, X. et al. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 5, 131–140 (2020).

Article  CAS  Google Scholar 

Mariotti, S. et al. Interface engineering for high-performance, triple-halide perovskite–silicon tandem solar cells. Science 381, 63–69 (2023).

Article  CAS  PubMed  Google Scholar 

Chin, X. Y. et al. Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells. Science 381, 59–63 (2023).

Article  CAS  PubMed  Google Scholar 

Tan, Q. et al. Inverted perovskite solar cells using dimethylacridine-based dopants. Nature 620, 545–551 (2023).

Article  CAS  PubMed  Google Scholar 

Park, S. M. et al. Engineering ligand reactivity enables high-temperature operation of stable perovskite solar cells. Science 381, 209–215 (2023).

Article  CAS  PubMed  Google Scholar 

Li, F. et al. Hydrogen-bond-bridged intermediate for perovskite solar cells with enhanced efficiency and stability. Nat. Photon. 17, 478–484 (2023).

Article  CAS  Google Scholar 

Yu, S. et al. Homogenized NiOx nanoparticles for improved hole transport in inverted perovskite solar cells. Science 382, 1399–1404 (2023).

Article  CAS  PubMed  Google Scholar 

Aydin, E. et al. Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells. Nature 623, 732–738 (2023).

Article  CAS  PubMed  Google Scholar 

Liu, C. et al. Bimolecularly passivated interface enables efficient and stable inverted perovskite solar cells. Science 382, 810–815 (2023).

Article  CAS  PubMed  Google Scholar 

Chin, Y.-C., Daboczi, M., Henderson, C., Luke, J. & Kim, J.-S. Suppressing PEDOT:PSS doping-induced interfacial recombination loss in perovskite solar cells. ACS Energy Lett. 7, 560–568 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kapil, G. et al. Tin–lead perovskite solar cells fabricated on hole selective monolayers. ACS Energy Lett. 7, 966–974 (2022).

Article  CAS  Google Scholar 

Zheng, X. et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2, 17102 (2017).

Article  CAS  Google Scholar 

Fei, C. et al. Lead-chelating hole-transport layers for efficient and stable perovskite minimodules. Science 380, 823–829 (2023).

Article  CAS  PubMed  Google Scholar 

Wang, Y. et al. PTAA as efficient hole transport materials in perovskite solar cells: a review. Sol. RRL 6, 2200234 (2022).

Article  CAS  Google Scholar 

Deng, Y. et al. Defect compensation in formamidinium–caesium perovskites for highly efficient solar mini-modules with improved photostability. Nat. Energy 6, 633–641 (2021).

Article  CAS  Google Scholar 

Li, Z. et al. Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376, 416–420 (2022).

Article  CAS  PubMed  Google Scholar 

Chen, Z. et al. Thin single crystal perovskite solar cells to harvest below-bandgap light absorption. Nat. Commun. 8, 1890 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Chen, Z. et al. Single-crystal MAPbI3 perovskite solar cells exceeding 21% power conversion efficiency. ACS Energy Lett. 4, 1258–1259 (2019).

Article  CAS  Google Scholar 

Degani, M. et al. 23.7% Efficient inverted perovskite solar cells by dual interfacial modification. Sci. Adv. 7, eabj7930 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, X. et al. Buried interfaces in halide perovskite photovoltaics. Adv. Mater. 33, 2006435 (2021).

Article  CAS  Google Scholar 

Xu, X. et al. Improving contact and passivation of buried interface for high-efficiency and large-area inverted perovskite solar cells. Adv. Funct. Mater. 32, 2109968 (2022).

Article  CAS  Google Scholar 

Xu, G. et al. Reducing energy disorder of hole transport layer by charge transfer complex for high performance p–i–n perovskite solar cells. Adv. Mater. 33, 2006753 (2021).

Article  CAS  Google Scholar 

Sun, X. et al. Efficient inverted perovskite solar cells with low voltage loss achieved by a pyridine-based dopant-free polymer semiconductor. Angew. Chem. Int. Ed. 60, 7227–7233 (2021).

Article  CAS  Google Scholar 

Chen, R. et al. Robust hole transport material with interface anchors enhances the efficiency and stability of inverted formamidinium–cesium perovskite solar cells with a certified efficiency of 22.3%. Energy Environ. Sci. 15, 2567–2580 (2022).

Article  CAS  Google Scholar 

Wu, S. et al. Modulation of defects and interfaces through alkylammonium interlayer for efficient inverted perovskite solar cells. Joule 4, 1248–1262 (2020).

Article 

留言 (0)

沒有登入
gif