Comparison of Green and Chemical Synthesis of Tin Oxide Nanoparticles via Co-precipitation Technique and Analysis of Its Optical Properties

1. Elango G, Kumaran SM, Kumar SS, Muthuraja S, Roopan SM. Green synthesis of SnO2 nanoparticles and its photocatalytic activity of phenolsulfonphthalein dye. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015;145:176-180.

2. Nachiar RA, Muthukumaran S. Structural, photoluminescence and magnetic properties of Cu-doped SnO2 nanoparticles co-doped with Co. Optics & Laser Technology. 2019;112:458-466.

3. Al-Saadi TM, Hussein BH, Hasan AB, Shehab AA. Study the Structural and Optical Properties of Cr doped SnO2 Nanoparticles Synthesized by Sol-Gel Method. Energy Procedia. 2019;157:457-465.

4. Garrafa-Galvez HE, Nava O, Soto-Robles CA, Vilchis-Nestor AR, Castro-Beltrán A, Luque PA. Green synthesis of SnO2 nanoparticle using Lycopersicon esculentum peel extract. J Mol Struct. 2019;1197:354-360.

5. Singh AK, Janotti A, Scheffler M, Van de Walle CG. Sources of Electrical Conductivity in SnO2. Phys Rev Lett. 2008;101(5).

6. Safardoust-Hojaghan H. Rare earth–doped SnO2 nanostructures and rare earth stannate (Re2Sn2O7) ceramic nanomaterials. Advanced Rare Earth-Based Ceramic Nanomaterials: Elsevier; 2022. p. 231-258.

7. Zulfiqar, Khan R, Yuan Y, Iqbal Z, Yang J, Wang W, et al. Variation of structural, optical, dielectric and magnetic properties of SnO2 nanoparticles. Journal of Materials Science: Materials in Electronics. 2016;28(6):4625-4636.

8. Luque PA, Nava O, Soto-Robles CA, Chinchillas-Chinchillas MJ, Garrafa-Galvez HE, Baez-Lopez YA, et al. Improved photocatalytic efficiency of SnO2 nanoparticles through green synthesis. Optik. 2020;206:164299.

9. Teldja B, Noureddine B, Azzeddine B, Meriem T. Effect of indium doping on the UV photoluminescence emission, structural, electrical and optical properties of spin-coating deposited SnO2 thin films. Optik. 2020;209:164586.

10. Jadhav DB, Kokate RD. Green synthesis of SnO2 using green papaya leaves for nanoelectronics (LPG sensing) application. Materials Today: Proceedings. 2020;26:998-1004.

11. Matussin S, Harunsani MH, Tan AL, Khan MM. Plant-Extract-Mediated SnO2 Nanoparticles: Synthesis and Applications. ACS Sustainable Chemistry & Engineering. 2020;8(8):3040-3054.

12. Liu Y, Jiao Y, Zhang Z, Qu F, Umar A, Wu X. Hierarchical SnO2 Nanostructures Made of Intermingled Ultrathin Nanosheets for Environmental Remediation, Smart Gas Sensor, and Supercapacitor Applications. ACS Applied Materials & Interfaces. 2014;6(3):2174-2184.

13. Shin Y-H, Cho C-K, Kim H-K. Resistance and transparency tunable Ag-inserted transparent InZnO films for capacitive touch screen panels. Thin Solid Films. 2013;548:641-645.

14. Gu F, Wang SF, Lü MK, Zhou GJ, Xu D, Yuan DR. Photoluminescence Properties of SnO2 Nanoparticles Synthesized by Sol−Gel Method. The Journal of Physical Chemistry B. 2004;108(24):8119-8123.

15. Wang X, Di Q, Wang X, Zhao H, Liang B, Yang J. Effect of oxygen vacancies on photoluminescence and electrical properties of (2 0 0) oriented fluorine-doped SnO2 films. Materials Science and Engineering: B. 2019;250:114433.

16. Wei Q, Sun J, Song P, Yang Z, Wang Q. Synthesis of reduced graphene oxide/ SnO2 nanosheets/Au nanoparticles ternary composites with enhanced formaldehyde sensing performance. Physica E: Low-dimensional Systems and Nanostructures. 2020;118:113953.

17. Ma J, Wang Y, Ji F, Yu X, Ma H. UV–violet photoluminescence emitted from SnO2:Sb thin films at different temperature. Mater Lett. 2005;59(17):2142-2145.

18. Abdelkrim A, Rahmane S, Abdelouahab O, Hafida A, Nabila K. Optoelectronic properties of SnO2 thin films sprayed at different deposition times. Chinese Physics B. 2016;25(4):046801.

19. Yang JK, Zhao HL, Li J, Zhao LP, Chen JJ, Yu B. Structural and optical properties and photoluminescence mechanism of fluorine-doped SnO2 films during the annealing process. Acta Mater. 2014;62:156-161.

20. Bhardwaj N, Satpati B, Mohapatra S. Plasmon-enhanced photoluminescence from SnO2 nanostructures decorated with Au nanoparticles. Appl Surf Sci. 2020;504:144381.

21. Whitesides GM. Nanoscience, Nanotechnology, and Chemistry. Small. 2004;1(2):172-179.

22. Bogdanović U, Lazić V, Vodnik V, Budimir M, Marković Z, Dimitrijević S. Copper nanoparticles with high antimicrobial activity. Mater Lett. 2014;128:75-78.

23. Karimi M, Kashi MA, Montazer AH. Synthesis and characterization of ultrafine γ-Al2O3:Cr nanoparticles and their performance in antibacterial activity. J Sol-Gel Sci Technol. 2021;99(1):178-187.

24. Vidhu VK, Philip D. Biogenic synthesis of SnO2 nanoparticles: Evaluation of antibacterial and antioxidant activities. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015;134:372-379.

25. Vennila R, Hasina Banu A, Kamaraj P, Devikala S, Arthanareeswari M, selvi JA, et al. A Novel Glucose Sensor Using Green Synthesized Ag Doped CeO2 Nanoparticles. Materials Today: Proceedings. 2018;5(2):8683-8690.

26. Khan SA, Kanwal S, Rizwan K, Shahid S. Enhanced antimicrobial, antioxidant, in vivo antitumor and in vitro anticancer effects against breast cancer cell line by green synthesized un-doped SnO2 and Co-doped SnO2 nanoparticles from Clerodendrum inerme. Microb Pathog. 2018;125:366-384.

27. Gebreslassie YT, Gebretnsae HG. Green and Cost-Effective Synthesis of Tin Oxide Nanoparticles: A Review on the Synthesis Methodologies, Mechanism of Formation, and Their Potential Applications. Nanoscale research letters. 2021;16(1):97-97.

28. Sirohi K, Kumar S, Singh V, Chauhan N. Hydrothermal synthesis of Cd-doped SnO2 Nanostructures and their Structural, Morphological and Optical Properties. Materials Today: Proceedings. 2020;21:1991-1998.

29. Rasekh HR, Khoshnood-Mansourkhani MJ, Kamalinejad M. Hypolipidemic effects of Teucrium polium in rats. Fitoterapia. 2001;72(8):937-939.

30. El-Shazly AM, Hussein KT. Chemical analysis and biological activities of the essential oil of Teucrium leucocladum Boiss. (Lamiaceae). Biochemical Systematics and Ecology. 2004;32(7):665-674.

31. Geng J, Ma C, Zhang D, Ning X. Facile and fast synthesis of SnO2 quantum dots for high performance solid-state asymmetric supercapacitor. J Alloys Compd. 2020;825:153850.

32. Gong J-Y, Guo S-R, Qian H-S, Xu W-H, Yu S-H. A general approach for synthesis of a family of functional inorganic nanotubes using highly active carbonaceous nanofibres as templates. J Mater Chem. 2009;19(7):1037-1042.

33. Suvith VS, Devu VS, Philip D. Facile synthesis of SnO2/NiO nano-composites: Structural, magnetic and catalytic properties. Ceram Int. 2020;46(1):786-794.

34. Anpo M, Tanahashi I, Kubokawa Y. Photoluminescence and photoreduction of vanadium pentoxide supported on porous Vycor glass. The Journal of Physical Chemistry. 1980;84(25):3440-3443.

35. Iwamoto M, Furukawa H, Matsukami K, Takenaka T, Kagawa S. Diffuse reflectance infrared and photoluminescence spectra of surface vanadyl groups. Direct evidence for change of bond strength and electronic structure of metal-oxygen bond upon supporting oxide. Journal of the American Chemical Society. 1983;105(11):3719-3720.

36. Sakthivel P, Murugan R, Asaithambi S, Karuppaiah M, Vijayaprasath G, Rajendran S, et al. Radio frequency power induced changes of structural, morphological, optical and electrical properties of sputtered cadmium oxide thin films. Thin Solid Films. 2018;654:85-92.

37. Liqiang J, Yichun Q, Baiqi W, Shudan L, Baojiang J, Libin Y, et al. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol Energy Mater Sol Cells. 2006;90(12):1773-1787.

38. Kumari L, Li WZ, Vannoy CH, Leblanc RM, Wang DZ. Vertically aligned and interconnected nickel oxide nanowalls fabricated by hydrothermal route. Cryst Res Technol. 2009;44(5):495-499.

39. Mohseni Meybodi S, Hosseini SA, Rezaee M, Sadrnezhaad SK, Mohammadyani D. Synthesis of wide band gap nanocrystalline NiO powder via a sonochemical method. Ultrason Sonochem. 2012;19(4):841-845.

40. Gnanam S, Rajendran V. Preparation of Cd-doped SnO2 nanoparticles by sol–gel route and their optical properties. J Sol-Gel Sci Technol. 2010;56(2):128-133.

41. Zhang J, Au KH, Zhu ZQ, O’Shea S. Sol–gel preparation of poly(ethylene glycol) doped indium tin oxide thin films for sensing applications. Opt Mater. 2004;26(1):47-55.

42. Sheny DS, Mathew J, Philip D. Phytosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2011;79(1):254-262.

43. Lamers RP, Stinnett JW, Muthukrishnan G, Parkinson CL, Cole AM. Evolutionary analyses of Staphylococcus aureus identify genetic relationships between nasal carriage and clinical isolates. PLoS One. 2011;6(1):e16426-e16426.

44. Shakerimoghaddam A, Safardoust-Hojaghan H, Amiri O, Salavati-Niasari M, Khorshidi A, Khaledi A. Ca19Zn2(PO4)14 Nanoparticles: Synthesis, characterization and its effect on the colonization of Streptococcus mutans on tooth surface. J Mol Liq. 2022;350:118507.

45. Erol S, Altoparlak U, Akcay MN, Celebi F, Parlak M. Changes of microbial flora and wound colonization in burned patients. Burns. 2004;30(4):357-361.

46. Wu C, Labrie J, Tremblay YDN, Haine D, Mourez M, Jacques M. Zinc as an agent for the prevention of biofilm formation by pathogenic bacteria. J Appl Microbiol. 2013;115(1):30-40.

47. Janardan S, Suman P, Ragul G, Anjaneyulu U, Shivendu R, Dasgupta N, et al. Assessment on the antibacterial activity of nanosized silica derived from hypercoordinated silicon(iv) precursors. RSC Advances. 2016;6(71):66394-66406.

留言 (0)

沒有登入
gif