Recent advancements in cartilage tissue engineering innovation and translation

Langer, R. & Vacanti, J. P. Tissue engineering. Science 260, 920–926 (1993).

Article  CAS  PubMed  Google Scholar 

Huey, D. J., Hu, J. C. & Athanasiou, K. A. Unlike bone, cartilage regeneration remains elusive. Science 338, 917–921 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matthews, L. S., Sonstegard, D. A. & Henke, J. A. Load bearing characteristics of the patello-femoral joint. Acta Orthop. Scand. 48, 511–516 (1977).

Article  CAS  PubMed  Google Scholar 

Kellathur, S. N. & Lou, H.-X. Cell and tissue therapy regulation: worldwide status and harmonization. Biologicals 40, 222–224 (2012).

Article  PubMed  Google Scholar 

Nordberg, R. C., Otarola, G. A., Wang, D., Hu, J. C. & Athanasiou, K. A. Navigating regulatory pathways for translation of biologic cartilage repair products. Sci. Transl. Med. 14, eabp8163 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

US Food and Drug Administration. Expedited programs for regenerative medicine therapies for serious conditions. fda.gov https://www.fda.gov/regulatory-information/search-fda-guidance-documents/expedited-programs-regenerative-medicine-therapies-serious-conditions (2019).

Muthu, S. et al. Failure of cartilage regeneration: emerging hypotheses and related therapeutic strategies. Nat. Rev. Rheumatol. 19, 403–416 (2023).

Article  CAS  PubMed  Google Scholar 

Sun, H. B. Mechanical loading, cartilage degradation, and arthritis. Ann. N. Y. Acad. Sci. 1211, 37–50 (2010).

Article  CAS  PubMed  Google Scholar 

Torzilli, P. A., Grigiene, R., Borrelli, J. & Helfet, D. L. Effect of impact load on articular cartilage: cell metabolism and viability, and matrix water content. J. Biomech. Eng. 121, 433–441 (1999).

Article  CAS  PubMed  Google Scholar 

Long, H. et al. Prevalence trends of site-specific osteoarthritis from 1990 to 2019: findings from the Global Burden of Disease study 2019. Arthritis Rheumatol. 74, 1172–1183 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Almutairi, K., Nossent, J., Preen, D., Keen, H. & Inderjeeth, C. The global prevalence of rheumatoid arthritis: a meta-analysis based on a systematic review. Rheumatol. Int. 41, 863–877 (2021).

Article  PubMed  Google Scholar 

Andriacchi, T. P. & Favre, J. The nature of in vivo mechanical signals that influence cartilage health and progression to knee osteoarthritis. Curr. Rheumatol. Rep. 16, 463 (2014).

Article  PubMed  Google Scholar 

Bullock, J. et al. Rheumatoid arthritis: a brief overview of the treatment. Med. Princ. Pract. 27, 501–507 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Ruiz, D. J. et al. The direct and indirect costs to society of treatment for end-stage knee osteoarthritis. J. Bone Jt Surg. Am. 95, 1473–1480 (2013).

Article  Google Scholar 

Birnbaum, H. et al. Societal cost of rheumatoid arthritis patients in the US. Curr. Med. Res. Opin. 26, 77–90 (2010).

Article  PubMed  Google Scholar 

Torio, C. & Moore, B. National inpatient hospital costs: the most expensive conditions by payer, 2013. in Healthcare Cost and Utilization Project (HCUP) Statistical Briefs. PMID: 27359025 (2016).

Takahashi, T. et al. Commercialization of regenerative-medicine therapies. Nat. Rev. Bioeng. 1, 906–929 (2023).

Article  Google Scholar 

Lee, D. H., Kim, S. J., Kim, S. A. & Ju, G. Past, present, and future of cartilage restoration: from localized defect to arthritis. Knee Surg. Relat. Res. 34, 1 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Kwon, H. et al. Surgical and tissue engineering strategies for articular cartilage and meniscus repair. Nat. Rev. Rheumatol. 15, 550–570 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Murray, I. R. et al. Regulatory and ethical aspects of orthobiologic therapies. Orthop. J. Sports Med. 10, 23259671221101624 (2022).

Google Scholar 

European Medicines Agency. Spherox. em.europa.eu https://www.ema.europa.eu/en/medicines/human/EPAR/spherox (2023).

National Institute for Health and Care Excellence. Autologous chondrocyte implantation using chondrosphere for treating symptomatic articular cartilage defects of the knee. nice.org.uk https://www.nice.org.uk/guidance/ta508/resources/autologous-chondrocyte-implantation-using-chondrosphere-for-treating-symptomatic-articular-cartilage-defects-of-the-knee-pdf-82606726260421 (2018).

Jiang, S. et al. Clinical application status of articular cartilage regeneration techniques: tissue-engineered cartilage brings new hope. Stem Cell Int. 2020, 5690252 (2020).

Google Scholar 

National Institute for Health and Care Research. NOVOCART 3D for articular cartilage defects of the knee. io.nihr.ac.uk https://www.io.nihr.ac.uk/wp-content/uploads/2022/01/13181-Autologous-Chondrocyte-Implant-for-Articular-Cartilage-Defects-V1.0-SEP2019-NON-CONF.pdf (2019).

US Food and Drug Administration. Approved cellular and gene therapy products. fda.gov https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/approved-cellular-and-gene-therapy-products (2024).

Pharmaceuticals and Medical Devices Agency. Review reports: regenerative medical products. pmda.go.jp https://www.pmda.go.jp/english/review-services/reviews/approved-information/0004.html (2023).

Ministry of Food and Drug Safety. 2022 Drug approval report. mfds.go.kr https://www.mfds.go.kr/eng/brd/m_19/down.do?brd_id=eng0004&seq=70438&data_tp=A&file_seq=1 (2023).

World Health Organization. Ageing and health. who.int https://who.int/news-room/fact-sheets/detail/ageing-and-health (2022).

Bielajew, B. J. et al. Knee orthopedics as a template for the temporomandibular joint. Cell Rep. Med. 2, 100241 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Manchikanti, L. et al. Prevalence of facet joint pain in chronic spinal pain of cervical, thoracic, and lumbar regions. BMC Musculoskelet. Disord. 5, 15 (2004).

Article  PubMed  PubMed Central  Google Scholar 

Lawrence, R. C. et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 58, 26–35 (2008).

Article  PubMed  PubMed Central  Google Scholar 

Evenbratt, H. et al. Insights into the present and future of cartilage regeneration and joint repair. Cell Regen. 11, 3 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

LaPrade, R. F. & Botker, J. C. Donor-site morbidity after osteochondral autograft transfer procedures. Arthroscopy 20, e69–e73 (2004).

Article  PubMed  Google Scholar 

Li, Y., Wei, X., Zhou, J. & Wei, L. The age-related changes in cartilage and osteoarthritis. Biomed. Res. Int. 2013, 916530 (2013).

PubMed  PubMed Central  Google Scholar 

Darling, E. M. & Athanasiou, K. A. Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J. Orthop. Res. 23, 425–432 (2005).

Article  CAS  PubMed  Google Scholar 

US Department of Health & Human Services. Points to consider in the characterization of cell lines used to produce biologicals. fda.gov https://www.fda.gov/media/76255/download (1993).

Park, Y.-B., Ha, C.-W., Lee, C.-H., Yoon, Y. C. & Park, Y.-G. Cartilage regeneration in osteoarthritic patients by a composite of allogeneic umbilical cord blood-derived mesenchymal stem cells and hyaluronate hydrogel: results from a clinical trial for safety and proof-of-concept with 7 years of extended follow-up. Stem Cell Transl. Med. 6, 613–621 (2017).

Article  CAS  Google Scholar 

Gille, J., Behrens, P., Schulz, A. P., Oheim, R. & Kienast, B. Matrix-associated autologous chondrocyte implantation. Cartilage 7, 309–315 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Hoburg, A. et al. Safety and efficacy of matrix-associated autologous chondrocyte implantation with spheroids for patellofemoral or tibiofemoral defects: a 5-year follow-up of a phase 2, dose-confirmation trial. Orthop. J. Sports Med. 10, 232596712110533 (2022).

Article  Google Scholar 

Thorp, H. et al. Trends in articular cartilage tissue engineering: 3D mesenchymal stem cell sheets as candidates for engineered hyaline-like cartilage. Cells 10, 643 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vonk, L. A., De Windt, T. S., Slaper-Cortenbach, I. C. M. & Saris, D. B. F. Autologous, allogeneic, induced pluripotent stem cell or a combination stem cell therapy? Where are we headed in cartilage repair and why: a concise review. Stem Cell Res. Ther. 6, 94 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Lin, Z. et al. Gene expression profiles of human chondrocytes during passaged monolayer cultivation. J. Orthop. Res. 26, 1230–1237 (2008).

Article  CAS  PubMed  Google Scholar 

Cavalli, E. et al. Characterization of polydactyly chondrocytes and their use in cartilage engineering. Sci. Rep. 9, 4275 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Tsvetkova, A. V. et al. Chondrogeneic potential of MSC from different sources in spheroid culture. Bull. Exp. Biol. Med. 170, 528–536 (2021).

Article  CAS  PubMed  Google Scholar 

Mohamed-Ahmed, S. et al. Adipose-derived and bone marrow mesenchymal stem cells: a donor-matched comparison. Stem Cell Res. Ther. 9, 168 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pievani, A. et al. Comparative analysis of multilineage properties of mesenchymal stromal cells derived from fetal sources shows an advantage of mesenchymal stromal cells isolated from cord blood in chondrogenic differentiation potential. Cytotherapy 16, 893–905 (2014).

Article  CAS  PubMed

留言 (0)

沒有登入
gif