Protein-adaptive differential scanning fluorimetry using conformationally responsive dyes

Schreiber, S. L. A chemical biology view of bioactive small molecules and a binder-based approach to connect biology to precision medicines. Isr. J. Chem. 59, 52–59 (2019).

Article  CAS  PubMed  Google Scholar 

Garlick, J. M. & Mapp, A. K. Selective modulation of dynamic protein complexes. Cell Chem. Biol. 27, 986–997 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chattopadhyay, G. & Varadarajan, R. Facile measurement of protein stability and folding kinetics using a nano differential scanning fluorimeter. Protein Sci. 28, 1127–1134 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Greenfield, N. J. Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat. Protoc. 1, 2527–2535 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Freire, E. Differential scanning calorimetry. Methods Mol. Biol. 40, 191–218 (1995).

CAS  PubMed  Google Scholar 

Atsavapranee, B., Stark, C. D., Sunden, F., Thompson, S. & Fordyce, P. M. Fundamentals to function: quantitative and scalable approaches for measuring protein stability. Cell Syst. 12, 547–560 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pantoliano, M. W. et al. High-density miniaturized thermal shift assays as a general strategy for drug discovery. J. Biomol. Screen. 6, 429–440 (2001).

Article  CAS  PubMed  Google Scholar 

Semisotnov, G. V. et al. Study of the ‘molten globule’ intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers 31, 119–128 (1991).

Article  CAS  PubMed  Google Scholar 

Simeonov, A. Recent developments in the use of differential scanning fluorometry in protein and small molecule discovery and characterization. Expert Opin. Drug Discov. 8, 1071–1082 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao, K., Oerlemans, R. & Groves, M. R. Theory and applications of differential scanning fluorimetry in early-stage drug discovery. Biophys. Rev. 12, 85–104 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Biter, A. B., de la Peña, A. H., Thapar, R., Lin, J. Z. & Phillips, K. J. DSF guided refolding as a novel method of protein production. Sci. Rep. 6, 18906 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, M. E., Dou, X., Zhu, Y. & Phillips, K. J. Refolding proteins from inclusion bodies using differential scanning fluorimetry guided (DGR) protein refolding and melttraceur web. Curr. Protoc. Mol. Biol. 125, e78 (2019).

Article  PubMed  Google Scholar 

Ristic, M., Rosa, N., Seabrook, S. A. & Newman, J. Formulation screening by differential scanning fluorimetry: how often does it work? Acta Crystallogr. F 71, 1359–1364 (2015).

Article  CAS  Google Scholar 

Chari, A. et al. ProteoPlex: stability optimization of macromolecular complexes by sparse-matrix screening of chemical space. Nat. Methods 12, 859–865 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahmed, S., Bhasin, M., Manjunath, K. & Varadarajan, R. Prediction of residue-specific contributions to binding and thermal stability using yeast surface display. Front. Mol. Biosci. 8, 800819 (2021).

Article  CAS  PubMed  Google Scholar 

Menzen, T. & Friess, W. High-throughput melting-temperature analysis of a monoclonal antibody by differential scanning fluorimetry in the presence of surfactants. J. Pharm. Sci. 102, 415–428 (2013).

Article  CAS  PubMed  Google Scholar 

Wu, T. et al. Three essential resources to improve differential scanning fluorimetry (DSF) experiments. Preprint at bioRxiv https://doi.org/10.1101/2020.03.22.002543 (2020).

Alexandrov, A. I., Mileni, M., Chien, E. Y. T., Hanson, M. A. & Stevens, R. C. Microscale fluorescent thermal stability assay for membrane proteins. Structure 16, 351–359 (2008).

Article  CAS  PubMed  Google Scholar 

Ihmels, H. Dyes in modern organic chemistry. Beilstein J. Org. Chem. 15, 2798–2800 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Condello, C. et al. Structural heterogeneity and intersubject variability of Aβ in familial and sporadic Alzheimer’s disease. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1714966115 (2018).

Kuenemann, M. A. et al. Weaver’s historic accessible collection of synthetic dyes: a cheminformatics analysis. Chem. Sci. 8, 4334–4339 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Protein-adaptive DSF data explorer. shinyapps https://padsfdyes.shinyapps.io/Exp1243_heatmap_cache/ (2024).

Gestwicki, J. Dye screening visual protocol. Zenodo https://doi.org/10.5281/zenodo.100231977 (2024).

Schiavina, M., Pontoriero, L., Uversky, V. N., Felli, I. C. & Pierattelli, R. The highly flexible disordered regions of the SARS-CoV-2 nucleocapsid N protein within the 1–248 residue construct: sequence-specific resonance assignments through NMR. Biomol. NMR Assign. 15, 219–227 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giri, R. et al. Understanding COVID-19 via comparative analysis of dark proteomes of SARS-CoV-2, human SARS and bat SARS-like coronaviruses. Cell. Mol. Life Sci. 78, 1655–1688 (2021).

Article  CAS  PubMed  Google Scholar 

Cubuk, J. et al. The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA. Nat. Commun. 12, 1936 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, S. et al. Targeting liquid–liquid phase separation of SARS-CoV-2 nucleocapsid protein promotes innate antiviral immunity by elevating MAVS activity. Nat. Cell Biol. 23, 718–732 (2021).

Article  CAS  PubMed  Google Scholar 

Krafcikova, P., Silhan, J., Nencka, R. & Boura, E. Structural analysis of the SARS-CoV-2 methyltransferase complex involved in RNA cap creation bound to sinefungin. Nat. Commun. 11, 3717 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin, S. et al. Crystal structure of SARS-CoV-2 nsp10 bound to nsp14-ExoN domain reveals an exoribonuclease with both structural and functional integrity. Nucleic Acids Res. 49, 5382–5392 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yoshimoto, F. K. The proteins of severe acute respiratory syndrome coronavirus-2 (SARS CoV-2 or n-COV19), the cause of COVID-19. Protein J. 39, 198–216 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fu, Z. et al. The complex structure of GRL0617 and SARS-CoV-2 PLpro reveals a hot spot for antiviral drug discovery. Nat. Commun. 12, 488 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schuller, M. et al. Fragment binding to the Nsp3 macrodomain of SARS-CoV-2 identified through crystallographic screening and computational docking. Sci. Adv. 7, eabf8711 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Virdi, R. S. et al. Discovery of drug-like ligands for the Mac1 domain of SARS-CoV-2 Nsp3. SLAS Discov. https://doi.org/10.1177/2472555220960428 (2020).

Gahbauer, S. et al. Iterative computational design and crystallographic screening identifies potent inhibitors targeting the Nsp3 macrodomain of SARS-CoV-2. Proc. Natl Acad. Sci. USA 120, e2212931120 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gestwicki, J. Data_S2_dye_screening_results. Zenodo https://doi.org/10.5281/zenodo.10028692 (2023).

Milardi, D., La Rosa, C. & Grasso, D. Extended theoretical analysis of irreversible protein thermal unfolding. Biophys. Chem. 52, 183–189 (1994).

Article  CAS  PubMed  Google Scholar 

Myers, J. K., Pace, C. N. & Scholtz, J. M. Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci. 4, 2138–2148 (1995).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rees, D. C. & Robertson, A. D. Some thermodynamic implications for the thermostability of proteins. Protein Sci. 10, 1187–1194 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Levine, Z. G. & Walker, S. The biochemistry of O-GlcNAc transferase: which functions make it essential in mammalian cells? Annu. Rev. Biochem. 85, 631–657 (2016).

Article  CAS  PubMed  Google Scholar 

Alteen, M. G. et al. Potent De Novo macrocyclic peptides that inhibit O-GlcNAc transferase through an Allosteric mechanism. Angew. Chem. Int. Ed. Engl. 62, e202215671 (2022).

留言 (0)

沒有登入
gif