Emerging roles of lactate in acute and chronic inflammation

Netea MG, Balkwill F, Chonchol M, Cominelli F, Donath MY, Giamarellos-Bourboulis EJ, et al. A guiding map for inflammation. Nat Immunol. 2017;18(8):826–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454(7203):428–35.

Article  CAS  PubMed  Google Scholar 

Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25(12):1822–32.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fullerton JN, Gilroy DW. Resolution of inflammation: a new therapeutic frontier. Nat Rev Drug Discov. 2016;15(8):551–67.

Article  CAS  PubMed  Google Scholar 

Franceschi C, Garagnani P, Vitale G, Capri M, Salvioli S. Inflammaging and “Garb-aging.” Trends Endocrinol Metab. 2017;28(3):199–212.

Article  CAS  PubMed  Google Scholar 

Shen-Orr SS, Furman D, Kidd BA, Hadad F, Lovelace P, Huang YW, et al. Defective Signaling in the JAK-STAT Pathway Tracks with Chronic Inflammation and Cardiovascular Risk in Aging Humans. Cell Syst. 2016;3(4):374-384e4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017.. Lancet. 2018;392(10159):1736–88.

Article  Google Scholar 

Xu H, Turnquist HR, Hoffman R, Billiar TR. Role of the IL-33-ST2 axis in sepsis. Mil Med Res. 2017;4:3.

PubMed  PubMed Central  Google Scholar 

Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet. 2020;395(10219):200–11.

Article  PubMed  PubMed Central  Google Scholar 

Dinarello CA. Anti-inflammatory Agents: Present and Future. Cell. 2010;140(6):935–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mita M, Ito M, Harada K, Sugawara I, Ueda H, Tsuboi T, Kitaguchi T. Green Fluorescent Protein-Based Glucose Indicators Report Glucose Dynamics in Living Cells. Anal Chem. 2019;91(7):4821–30.

Article  CAS  PubMed  Google Scholar 

Rabinowitz JD, Enerback S. Lactate: the ugly duckling of energy metabolism. Nat Metab. 2020;2(7):566–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mookerjee SA, Gerencser AA, Nicholls DG, Brand MD. Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements. J Biol Chem. 2017;292(17):7189–207.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Galvan-Pena S, O’Neill LA. Metabolic reprograming in macrophage polarization. Front Immunol. 2014;5:420.

PubMed  PubMed Central  Google Scholar 

Kaymak I, Luda KM, Duimstra LR, Ma EH, Longo J, Dahabieh MS, et al. Carbon source availability drives nutrient utilization in CD8(+) T cells. Cell Metab. 2022;34(9):1298-1311e6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Quinn WJ 3rd, Jiao J, TeSlaa T, Stadanlick J, Wang Z, Wang L. Lactate Limits T Cell Proliferation via the NAD(H) Redox State. Cell Rep. 2020;33(11):108500.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Angelin A, Gil-de-Gomez L, Dahiya S, Jiao J, Guo L, Levine MH, et al. Foxp3 Reprograms T Cell Metabolism to Function in Low-Glucose, High-Lactate Environments. Cell Metab. 2017;25(6):1282-1293e7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Watson MJ, Vignali PDA, Mullett SJ, Overacre-Delgoffe AE, Peralta RM, Grebinoski S, et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature. 2021;591(7851):645–51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, et al. Metabolic regulation of gene expression by histone lactylation. Nature. 2019;574(7779):575–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Warburg O. Iron, the Oxygen-Carrier of Respiration-Ferment. Science. 1925;61(1588):575–82.

Article  CAS  PubMed  Google Scholar 

Krawczyk CM, Holowka T, Sun J, Blagih J, Amiel E, DeBerardinis RJ, et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood. 2010;115(23):4742–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P, et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature. 2011;472(7344):476–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rathinam VAK, Chan FK. Inflammasome, Inflammation, and Tissue Homeostasis. Trends Mol Med. 2018;24(3):304–18.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Palsson-McDermott EM, O’Neill LA. The Warburg effect then and now: from cancer to inflammatory diseases. BioEssays. 2013;35(11):965–73.

Article  CAS  PubMed  Google Scholar 

Chen Z, Liu M, Li L, Chen L. Involvement of the Warburg effect in non-tumor diseases processes. J Cell Physiol. 2018;233(4):2839–49.

Article  CAS  PubMed  Google Scholar 

Faubert B, Li KY, Cai L, Hensley CT, Kim J, Zacharias LG, et al. Lactate Metabolism in Human Lung Tumors. Cell. 2017;171(2):358-371e9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Noe JT, Rendon BE, Geller AE, Conroy LR, Morrissey SM, Young LEA, et al. Lactate supports a metabolic-epigenetic link in macrophage polarization. Sci Adv. 2021;7(46):p.eabi8602.

Article  Google Scholar 

Infantino V, Convertini P, Cucci L, Panaro MA, Di Noia MA, Calvello R, et al. The mitochondrial citrate carrier: a new player in inflammation. Biochem J. 2011;438(3):433–6.

Article  CAS  PubMed  Google Scholar 

Ivashkiv LB. The hypoxia-lactate axis tempers inflammation. Nat Rev Immunol. 2020;20(2):85–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Menkin V, Warner CR. Studies on Inflammation: XIII. Carbohydrate Metabolism, Local Acidosis, and the Cytological Picture in Inflammation. Am J Pathol. 1937;13(1):25–44-1.

CAS  PubMed  PubMed Central  Google Scholar 

Dubos RJ. The micro-environment of inflammation or Metchnikoff revisited. Lancet. 1955;269(6879):1–5.

CAS  PubMed  Google Scholar 

Edlow DW, Sheldon WH. The pH of inflammatory exudates. Proc Soc Exp Biol Med. 1971;137(4):1328–32.

Article  CAS  PubMed  Google Scholar 

Pucino v, Certo M, Bulusu V, Cucchi D, Goldmann K, Pontarini E, et al. Lactate Buildup at the Site of Chronic Inflammation Promotes Disease by Inducing CD4(+) T Cell Metabolic Rewiring. Cell Metab. 2019;30(6):1055-1074e8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen L, Huang L, Gu Y, Cang W, Sun P, Xiang Y. Lactate-lactylation hands between metabolic reprogramming and immunosuppression. Int J Mol Sci. 2022;23(19):11943.

Srinivas SR, Gopal E, Zhuang L, Itagaki S, Martin PM, Fei YJ, et al. Cloning and functional identification of slc5a12 as a sodium-coupled low-affinity transporter for monocarboxylates (SMCT2). Biochemical Journal. 2005;392:655–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Z, Meng Z, Li Y, Zhao J, Wu S, Gou S, Wu H. Prognostic accuracy of the serum lactate level, the SOFA score and the qSOFA score for mortality among adults with Sepsis. Scand J Trauma Resusc Emerg Med. 2019;27(1):51.

Article  PubMed  PubMed Central  Google Scholar 

Yang K, Fan M, Wang X, Xu J, Wang Y, Tu F, et al. Lactate promotes macrophage HMGB1 lactylation, acetylation, and exosomal release in polymicrobial sepsis. Cell Death Differ. 2022;29(1):

留言 (0)

沒有登入
gif