Paediatrics congenital heart disease is associated with plasma miRNAs

Marquez-González, H., Yañez-Gutierrez, L., Rivera-May, J., Lopez-Gallegos, D. & Gutierrez, E. Análisis Demográfico de Una Clínica de Cardiopatías Congénitas Del Instituto Mexicano Del Seguro Social, Con Interés En El Adulto. Arch. Cardiol. Méx. 88, 360–368 (2018).

PubMed  Google Scholar 

Smith, T., Rajakaruna, C., Caputo, M. & Emanueli, C. MicroRNAs in congenital heart disease. Ann. Transl. Med. 3, 333 (2015).

PubMed  PubMed Central  Google Scholar 

Claeys, M. J., Bondue, A., Lancellotti, P. & De Pauw, M. Summary of 2020 ESC guidelines on non-STE ACS, adult congenital heart disease, sports cardiology and atrial fibrillation. Acta Cardiol. 77, 864–872 (2022).

Article  PubMed  Google Scholar 

Saliba, A. et al. Genetic and genomics in congenital heart disease: a clinical review. J. Pediatr. 96, 279–288 (2019).

Article  Google Scholar 

Rohit, M. & Shrivastava, S. Acyanotic and cyanotic congenital heart diseases. Indian J. Pediatr. 85, 454–460 (2018).

Article  PubMed  Google Scholar 

Quien, M., Ryzhkov, I., Miras, L. & Zarich, S. Complex congenital heart disease: gerbode defect with a bicuspid aortic valve and coarctation of the aorta. CASE 7, 242–244 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Lim, T. B., Foo, S. Y. R. & Chen, C. K. The role of epigenetics in congenital heart disease. Genes 12, 390 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kalayinia, S., Arjmand, F., Maleki, M., Malakootian, M. & Singh, C. P. MicroRNAs: roles in cardiovascular development and disease. Cardiovasc. Pathol. 50, 107296 (2021).

Article  CAS  PubMed  Google Scholar 

Saliminejad, K., Khorram-Khorshid, H. R., Soleymani-Fard, S. & Ghaffari, S. H. An overview of MicroRNAs: biology, functions, therapeutics, and analysis methods. J. Cell Physiol. 234, 5451–5465 (2019).

Article  CAS  PubMed  Google Scholar 

Eddy, A. A. The TGF-β route to renal fibrosis is not linear: the MiR-21 Viaduct. J. Am. Soc. Nephrol. 22, 1573–1575 (2011).

Article  CAS  PubMed  Google Scholar 

Yuan, X. et al. MiR-144-3p enhances cardiac fibrosis after myocardial infarction by targeting PTEN. Front. Cell Dev. Biol. 7, 249 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Icli, B., Dorbala, P. & Feinberg, M. W. An emerging role for the MiR-26 family in cardiovascular disease. Trends Cardiovasc. Med. 24, 241–248 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, X. G. et al. Cancer-derived exosomal MiR-221-3p promotes angiogenesis by targeting THBS2 in cervical squamous cell carcinoma. Angiogenesis 22, 397–410 (2019).

Article  CAS  PubMed  Google Scholar 

Clement, M., Viggiani, G., Chen, Y. W., Coulis, G. & Castaldi, A. MicroRNA and ROS Crosstalk in Cardiac and Pulmonary Diseases. Int. J. Mol. Sci. 21, 4370 (2020).

Article  Google Scholar 

Wang, G., Wang, B. & Yang, P. Epigenetics in congenital heart disease. J. Am. Heart Assoc. 11, e025163 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu, S. et al. Identification of maternal serum microRNAs as novel non-invasive biomarkers for prenatal detection of fetal congenital heart defects. Clin. Chim. Acta 424, 66–72 (2013).

Article  CAS  PubMed  Google Scholar 

Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 25, 402–408 (2001).

Article  CAS  PubMed  Google Scholar 

Kumaraswamy, R., Volkmann, I. & Thum, T. Regulation and function of MiRNA-21 in health and disease. RNA Biol. 8, 706–713 (2011).

Article  Google Scholar 

Li, M. et al. MiR-1-3p that correlates with left ventricular function of HCM can serve as a potential target and differentiate HCM from DCM. J. Transl. Med. 16, 161 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rubis, P. et al. Relations between circulating micrornas (Mir-21, Mir-26, Mir-29, Mir-30 And Mir-133a), extracellular matrix fibrosis and serum markers of fibrosis in dilated cardiomyopathy. Int. J. Cardiol. 231, 201–206 (2017).

Article  PubMed  Google Scholar 

Liu, S. et al. Micro-RNA 21targets dual specific phosphatase 8 to promote collagen synthesis in high glucose treated primary cardiac fibroblasts. Can. J. Cardiol. 30, 1689–1699 (2014).

Article  PubMed  Google Scholar 

Xiao, J. et al. Cardiac progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal Mir-21 by targeting PDCD4. Cell Death Dis. 7, e2277 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, Y. et al. A feedback regulatory loop between HIF-1 Alpha and Mir-21 in response to hypoxia in cardiomyocytes. FEBS Lett. 588, 3137–3146 (2014).

Article  CAS  PubMed  Google Scholar 

Zlabinger, K. et al. MiR-21, MiR-29a, GATA4, and MEF2c expression changes in Endothelin-1 and Angiotensin II cardiac hypertrophy stimulated Isl-1(+) Sca-1(+) c-kit(+) porcine cardiac progenitor cells in vitro. Cells 8, 1416 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng, Y. et al. MicroRNA-21 protects against the H(2)O(2)-induced injury on cardiac myocytes via its target gene PDCD4. J. Mol. Cell Cardiol. 47, 5–14 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu, H. F. et al. MicroRNA21 regulation of the progression of viral myocarditis to dilated cardiomyopathy. Mol. Med. Rep. 10, 161–168 (2014).

Article  CAS  PubMed  Google Scholar 

Sayed, D. et al. MicroRNA-21 Targets Sprouty2 and promotes cellular outgrowths. Mol. Biol. Cell 19, 3272–3282 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, Q. et al. Inhibition of miR-21 alleviated cardiac perivascular fibrosis via repressing EndMT in T1DM. J. Cell Mol. Med. 24, 910–920 (2020).

Article  CAS  PubMed  Google Scholar 

Sanford, L. P. et al. TGF beta2 knockout mice have multiple developmental defects that are non-overlapping with other TGF beta knockout phenotypes. Development 124, 2659–2670 (1997).

Article  CAS  PubMed  Google Scholar 

Bartram, U. et al. Double-outlet right ventricle and overriding tricuspid valve reflect disturbances of looping, myocardialization, endocardial cushion differentiation, and apoptosis in TGF-Beta (2)- knockout mice. Circulation 103, 2745–2752 (2001).

Article  CAS  PubMed  Google Scholar 

Jiao, K. et al. TGF beta signaling is required for atrioventricular cushion mesenchyme remodeling during in vivo cardiac development. Development 133, 4585–4593 (2006).

Article  CAS  PubMed  Google Scholar 

Sridurongrit, S. et al. Signaling via the TGF beta Type I Receptor Alk5 in heart development. Dev. Biol. 322, 208–218 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chuppa, S. et al. MicroRNA-21 regulates peroxisome proliferator-activated receptor alpha, a molecular mechanism of cardiac pathology in cardiorenal syndrome Type 4. Kidney Int. 93, 375–389 (2018).

Article  CAS  PubMed  Google Scholar 

Shen, H. et al. miR-21 enhances the protective effect of loperamide on rat cardiomyocytes against hypoxia/reoxygenation, reactive oxygen species production and apoptosis via regulating Akap8 and Bard1 expression. Exp. Ther. Med. 17, 1312–1320 (2019).

CAS  PubMed  Google Scholar 

Zhou, X. L. et al. miR-21 promotes cardiac fibroblast-to-myofibroblast transformation and myocardial fibrosis by targeting Jagged1. J. Cell Mol. Med. 22, 3816–3824 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bang, C. et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J. Clin. Investig. 124, 2136–2146 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kang, Z. et al. Remote ischemic preconditioning upregulates MicroRNA-21 to protect the kidney in children with congenital heart disease undergoing cardiopulmonary bypass. Pediatr. Nephrol. 33, 911–919 (2018).

Article  PubMed  Google Scholar 

Lacedonia, D. et al. MicroRNA expression profile during different conditions of hypoxia. Oncotarget 9, 35114–35122 (2018).

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif