Photodynamic inactivation of E. coli with cationic imidazolyl-porphyrin photosensitizers and their synergic combination with antimicrobial cinnamaldehyde

World Health Organization. (2017). Global Priority List of Antibiotic Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics (pp. 1–7). World Health Organization.

Google Scholar 

Murray, C. J. L., Ikuta, K. S., Sharara, F., Swetschinski, L., Aguilar, G. R., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Hamadani, B. H. K., Kumaran, E. A. P., McManigal, B., et al. (2022). Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet, 399(10325), 629–655. https://doi.org/10.1016/s0140-6736(21)02724-0

Article  CAS  Google Scholar 

Aroso, R. T., Schaberle, F. A., Arnaut, L. G., & Pereira, M. M. (2021). Photodynamic disinfection and its role in controlling infectious diseases. Photochemical & Photobiological Sciences, 20(11), 1497–1545. https://doi.org/10.1007/s43630-021-00102-1

Article  CAS  Google Scholar 

Cieplik, F., Deng, D., Crielaard, W., Buchalla, W., Hellwig, E., Al-Ahmad, A., & Maisch, T. (2018). Antimicrobial photodynamic therapy—What we know and what we don’t. Critical Reviews in Microbiology, 44(5), 571–589. https://doi.org/10.1080/1040841X.2018.1467876

Article  CAS  PubMed  Google Scholar 

Nguyen, V. N., Zhao, Z., Tang, B. Z., & Yoon, J. (2022). Organic photosensitizers for antimicrobial phototherapy. Chemical Society Reviews, 51(9), 3324–3340. https://doi.org/10.1039/d1cs00647a

Article  CAS  PubMed  Google Scholar 

Hamblin, M. R., & Jori, G. (2011). Photodynamic Inactivation of Microbial Pathogens. The Royal Society of Chemistry.

Book  Google Scholar 

Warrier, A., Mazumder, N., Prabhu, S., Satyamoorthy, K., & Murali, T. S. (2021). Photodynamic therapy to control microbial biofilms. Photodiagnosis and Photodynamic Therapy, 33, 102090. https://doi.org/10.1016/j.pdpdt.2020.102090

Article  CAS  PubMed  Google Scholar 

Vinagreiro, C. S., Zangirolami, A., Schaberle, F. A., Nunes, S. C. C., Blanco, K. C., Inada, N. M., da Silva, G. J., Pais, A., Bagnato, V. S., Arnaut, L. G., & Pereira, M. M. (2020). Antibacterial photodynamic inactivation of antibiotic-resistant bacteria and biofilms with nanomolar photosensitizer concentrations. ACS Infectious Diseases, 6(6), 1517–1526. https://doi.org/10.1021/acsinfecdis.9b00379

Article  CAS  PubMed  Google Scholar 

Hu, X., Huang, Y. Y., Wang, Y., Wang, X., & Hamblin, M. R. (2018). Antimicrobial photodynamic therapy to control clinically relevant biofilm infections. Frontiers in Microbiology, 9, 1299. https://doi.org/10.3389/fmicb.2018.01299

Article  PubMed  PubMed Central  Google Scholar 

Xuan, W., Huang, L., Wang, Y., Hu, X., Szewczyk, G., Huang, Y. Y., El-Hussein, A., Bommer, J. C., Nelson, M. L., Sarna, T., & Hamblin, M. R. (2019). Amphiphilic tetracationic porphyrins are exceptionally active antimicrobial photosensitizers: In vitro and in vivo studies with the free-base and Pd-chelate. Journal of Biophotonics, 12(8), e201800318. https://doi.org/10.1002/jbio.201800318

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alenezi, K., Tovmasyan, A., Batinic-Haberle, I., & Benov, L. T. (2017). Optimizing Zn porphyrin-based photosensitizers for efficient antibacterial photodynamic therapy. Photodiagnosis and Photodynamic Therapy, 17, 154–159. https://doi.org/10.1016/j.pdpdt.2016.11.009

Article  CAS  PubMed  Google Scholar 

Marciel, L., Mesquita, M. Q., Ferreira, R., Moreira, B., Neves, P. M. S., Faustino, M. A. F., & Almeida, A. (2018). An efficient formulation based on cationic porphyrins to photoinactivate Staphylococcus aureus and Escherichia coli. Future Medicinal Chemistry, 10(15), 1821–1833. https://doi.org/10.4155/fmc-2018-0010

Article  CAS  PubMed  Google Scholar 

Caruso, E., Malacarne, M. C., Banfi, S., Gariboldi, M. B., & Orlandi, V. T. (2019). Cationic diarylporphyrins: In vitro versatile anticancer and antibacterial photosensitizers. Journal of Photochemistry and Photobiology B: Biology, 197, 111548. https://doi.org/10.1016/j.jphotobiol.2019.111548

Article  CAS  PubMed  Google Scholar 

Sulek, A., Pucelik, B., Kobielusz, M., Barzowska, A., & Dabrowski, J. M. (2020). Photodynamic inactivation of bacteria with porphyrin derivatives: Effect of charge, lipophilicity, ROS generation, and cellular uptake on their biological activity in vitro. International Journal of Molecular Sciences, 21(22), 8716. https://doi.org/10.3390/ijms21228716

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ziganshyna, S., Guttenberger, A., Lippmann, N., Schulz, S., Bercker, S., Kahnt, A., Ruffer, T., Voigt, A., Gerlach, K., & Werdehausen, R. (2020). Tetrahydroporphyrin-tetratosylate (THPTS)-based photodynamic inactivation of critical multidrug-resistant bacteria in vitro. International Journal of Antimicrobial Agents, 55(6), 105976. https://doi.org/10.1016/j.ijantimicag.2020.105976

Article  CAS  PubMed  Google Scholar 

Almeida, J., Tome, J. P., Neves, M. G., Tome, A. C., Cavaleiro, J. A., Cunha, A., Costa, L., Faustino, M. A., & Almeida, A. (2014). Photodynamic inactivation of multidrug-resistant bacteria in hospital wastewaters: Influence of residual antibiotics. Photochemical & Photobiological Sciences, 13(4), 626–633. https://doi.org/10.1039/c3pp50195g

Article  CAS  Google Scholar 

Merchat, M., Bertolini, G., Giacomini, P., Villaneuva, A., & Jori, G. (1996). Meso-substituted cationic porphyrins as efficient photosensitizers of gram-positive and gram-negative bacteria. Journal of Photochemistry and Photobiology B: Biology, 32(3), 153–157. https://doi.org/10.1016/1011-1344(95)07147-4

Article  CAS  PubMed  Google Scholar 

Banfi, S., Caruso, E., Buccafurni, L., Battini, V., Zazzaron, S., Barbieri, P., & Orlandi, V. (2006). Antibacterial activity of tetraaryl-porphyrin photosensitizers: An in vitro study on Gram negative and Gram positive bacteria. Journal of Photochemistry and Photobiology B: Biology, 85(1), 28–38. https://doi.org/10.1016/j.jphotobiol.2006.04.003

Article  CAS  PubMed  Google Scholar 

Salmon-Divon, M., Nitzan, Y., & Malik, Z. (2004). Mechanistic aspects of Escherichia coli photodynamic inactivation by cationic tetra-meso(N-methylpyridyl)porphine. Photochemical & Photobiological Sciences, 3(5), 423–429. https://doi.org/10.1039/B315627N

Article  CAS  Google Scholar 

Orlandi, V. T., Caruso, E., Tettamanti, G., Banfi, S., & Barbieri, P. (2013). Photoinduced antibacterial activity of two dicationic 5,15-diarylporphyrins. Journal of Photochemistry and Photobiology B: Biology, 127, 123–132. https://doi.org/10.1016/j.jphotobiol.2013.08.011

Article  CAS  PubMed  Google Scholar 

Ragàs, X., Agut, M., & Nonell, S. (2010). Singlet oxygen in Escherichia coli: New insights for antimicrobial photodynamic therapy. Free Radical Biology and Medicine, 49(5), 770–776. https://doi.org/10.1016/j.freeradbiomed.2010.05.027

Article  CAS  PubMed  Google Scholar 

Hurst, A. N., Scarbrough, B., Saleh, R., Hovey, J., Ari, F., Goyal, S., Chi, R. J., Troutman, J. M., & Vivero-Escoto, J. L. (2019). Influence of cationic meso-substituted porphyrins on the antimicrobial photodynamic efficacy and cell membrane interaction in Escherichia coli. International Journal of Molecular Sciences, 20(1), 134. https://doi.org/10.3390/ijms20010134

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cormick, M. P., Alvarez, M. G., Rovera, M., & Durantini, E. N. (2009). Photodynamic inactivation of Candida albicans sensitized by tri- and tetra-cationic porphyrin derivatives. European Journal of Medicinal Chemistry, 44(4), 1592–1599. https://doi.org/10.1016/j.ejmech.2008.07.026

Article  CAS  PubMed  Google Scholar 

Gsponer, N. S., Spesia, M. B., & Durantini, E. N. (2015). Effects of divalent cations, EDTA and chitosan on the uptake and photoinactivation of Escherichia coli mediated by cationic and anionic porphyrins. Photodiagnosis and Photodynamic Therapy, 12(1), 67–75. https://doi.org/10.1016/j.pdpdt.2014.12.004

Article  CAS  PubMed  Google Scholar 

Aroso, R. T., Calvete, M. J. F., Pucelik, B., Dubin, G., Arnaut, L. G., Pereira, M. M., & Dabrowski, J. M. (2019). Photoinactivation of microorganisms with sub-micromolar concentrations of imidazolium metallophthalocyanine salts. European Journal of Medical Chemistry, 184, 111740. https://doi.org/10.1016/j.ejmech.2019.111740

Article  CAS  Google Scholar 

Aroso, R. T., Dias, L. D., Blanco, K. C., Soares, J. M., Alves, F., Silva, G. J., Arnaut, L. G., Bagnato, V. S., & Pereira, M. M. (2022). Synergic dual phototherapy: Cationic imidazolyl photosensitizers and ciprofloxacin for eradication of in vitro and in vivo E. coli infections. Journal of Photochemistry and Photobiology B: Biology, 233, 112499. https://doi.org/10.1016/j.jphotobiol.2022.112499

Article  CAS  PubMed  Google Scholar 

Wozniak, A., & Grinholc, M. (2018). Combined antimicrobial activity of photodynamic inactivation and antimicrobials-state of the art. Frontiers in Microbiology, 9, 930. https://doi.org/10.3389/fmicb.2018.00930

Article  PubMed  PubMed Central  Google Scholar 

Morley, S., Griffiths, J., Philips, G., Moseley, H., O’Grady, C., Mellish, K., Lankester, C. L., Faris, B., Young, R. J., Brown, S. B., & Rhodes, L. E. (2013). Phase IIa randomized, placebo-controlled study of antimicrobial photodynamic therapy in bacterially colonized, chronic leg ulcers and diabetic foot ulcers: A new approach to antimicrobial therapy. British Journal of Dermatology, 168(3), 617–624. https://doi.org/10.1111/bjd.12098

Article  CAS  PubMed  Google Scholar 

Mannucci, E., Genovese, S., Monami, M., Navalesi, G., Dotta, F., Anichini, R., Romagnoli, F., & Gensini, G. (2014). Photodynamic topical antimicrobial therapy for infected foot ulcers in patients with diabetes: A randomized, double-blind, placebo-controlled study – The D.A.N.T.E (Diabetic ulcer Antimicrobial New Topical treatment Evaluation) study. Acta Diabetologica, 51(3), 435–440. https://doi.org/10.1007/s00592-013-0533-3

Article  CAS  PubMed  Google Scholar 

Hamblin, M. R., O’Donnell, D. A., Murthy, N., Contag, C. H., & Hasan, T. (2007). Rapid control of wound infections by targeted photodynamic therapy monitored by in vivo bioluminescence imaging. Photochemistry and Photobiology, 75(1), 51–57. https://doi.org/10.1562/0031-8655(2002)0750051rcowib2.0.Co2

Article  Google Scholar 

Dai, T., Tegos, G. P., Zhiyentayev, T., Mylonakis, E., & Hamblin, M. R. (2010). Photodynamic therapy for methicillin-resistant Staphylococcus aureus infection in a mouse skin abrasion model. Lasers in Surgery and Medicine, 42(1), 38–44. https://doi.org/10.1002/lsm.20887

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif