Filling data gaps in long-term solar UV monitoring by statistical imputation methods

Lucas, R. M., Yazar, S., Young, A. R., Norval, M., Gruijl, F. R., Takizawa, Y., Rhodes, L. E., Sinclair, C. A., & Neale, R. E. (2019). Human health in relation to exposure to solar ultraviolet radiation under changing stratospheric ozone and climate. Photochemical & Photobiological Sciences, 18, 641–680. https://doi.org/10.1039/C8PP90060D

Article  CAS  Google Scholar 

Barnes, P., Williamson, C., Lucas, R., Robinson, S., Madronich, S., Paul, N., Bornman, J., Bais, A., Sulzberger, B., Wilson, S., Andrady, A., McKenzie, R., Neale, P., Austin, A., Bernhard, G., Solomon, K., Neale, R., Young, P., Norval, M., … Zepp, R. (2019). Ozone depletion, ultraviolet radiation, climate change and prospects for a sustainable future. Nature Sustainability, 2(7), 569–579. https://doi.org/10.1038/s41893-019-0314-2

Article  Google Scholar 

Bornman, J. F., Paul, N., Shao, M., & Solomon, K. R. (2019). Environmental effects and interactions of stratospheric ozone depletion, UV radiation, and climate change: 2018 assessment. Photochemical & Photobiological Sciences, 18, 601. https://doi.org/10.1039/c8pp90066c

Article  CAS  Google Scholar 

UNEP: Environmental Effects of Stratospheric Ozone Depletion, UV Radiation, and Interactions with Climate Change: 2022 Assessment Report of the Environmental Effects Assessment Panel. UNEP, Nairobi (2023)

Schmalwieser, A., Gröbner, J., Klotz, B., Blumthaler, M., Backer, H., Bolsée, D., Werner, R., Tomsic, D., Metelka, L., Eriksen, P., Jepsen, N., Aun, M., Heikkilä, A., Duprat, T., Sandmann, H., Weiss, T., Bais, A., Toth, Z., Siani, A., & O’Hagan, J. (2017). UV index monitoring in Europe. Photochemical & Photobiological Sciences, 16, 1349–1370. https://doi.org/10.1039/C7PP00178A

Article  CAS  Google Scholar 

Kaye, J.A., Hicks, B.B., Weatherhead, E.C., Long, C.S., , Slusser, J.: U.s. interagency UV monitoring program established and operating. Eos, Transactions American Geophysical Union 80, 113–120 (1999) https://doi.org/10.1029/99EO00075

McElroy, C. T., Kerr, J. B., McArthur, L. J. B., & Wardle, D. I. (1994). Ground-based monitoring of UV-B radiation in Canada. In R. H. Biggs & M. E. B. Joyner (Eds.), Stratospheric Ozone Depletion/UV-B Radiation in the Biosphere (pp. 271–282). Berlin, Heidelberg: Springer.

Chapter  Google Scholar 

Lamy, K., Portafaix, T., Brogniez, C., Lakkala, K., Pitkänen, M. R. A., Arola, A., Forestier, J.-B., Amelie, V., Toihir, M. A., & Rakotoniaina, S. (2021). UV-Indien network: ground-based measurements dedicated to the monitoring of UV radiation over the western Indian Ocean. Earth System Science Data, 13(9), 4275–4301. https://doi.org/10.5194/essd-13-4275-2021

Article  Google Scholar 

Gies, P., Roy, C., Javorniczky, J., Henderson, S., Deschamps, L., & Driscoll, C. (2004). Global solar UV index: Australian measurements, forecasts and comparison with the UK. Photochemistry and Photobiology, 79, 32–39. https://doi.org/10.1562/0031-8655(2004)79<32:GSUIAM>2.0.CO;2

Article  CAS  PubMed  Google Scholar 

McKenzie, R. L. (1994). UV radiation monitoring in New Zealand. In R. H. Biggs & M. E. B. Joyner (Eds.), Stratospheric Ozone Depletion/UV-B Radiation in the Biosphere (pp. 239–246). Berlin, Heidelberg: Springer.

Chapter  Google Scholar 

Outer, P. N., Slaper, H., Kaurola, J., Lindfors, A., Kazantzidis, A., Bais, A., Feister, U., Junk, J., Janouch, M., & Josefsson, W. (2010). Reconstructing of erythemal ultraviolet radiation levels in Europe for the past 4 decades. Journal of Geophysical Research, 115, 10102. https://doi.org/10.1029/2009JD012827

Article  CAS  Google Scholar 

Bilbao, J., & De Miguel, A. (2020). Erythemal solar irradiance, UVER, and UV index from ground-based data in Central Spain. Applied Sciences, 10, 6589. https://doi.org/10.3390/app10186589

Article  CAS  Google Scholar 

De Bock, V., De Backer, H., Van Malderen, R., Mangold, A., & Delcloo, A. (2014). Relations between erythemal UV dose, global solar radiation, total ozone column and aerosol optical depth at Uccle. Belgium. Atmospheric Chemistry and Physics, 14(22), 12251–12270. https://doi.org/10.5194/acp-14-12251-2014

Article  CAS  Google Scholar 

Fitzka, M., Simic, S., & Hadzimustafic, J. (2012). Trends in spectral UV radiation from long-term measurements at Hoher Sonnblick. Austria. Theoretical and Applied Climatology, 110, 585–593. https://doi.org/10.1007/s00704-012-0684-0

Article  Google Scholar 

Fountoulakis, I., Zerefos, C. S., Bais, A. F., Kapsomenakis, J., Koukouli, M.-E., Ohkawara, N., Fioletov, V., De Backer, H., Lakkala, K., Karppinen, T., & Webb, A. R. (2018). Twenty-five years of spectral UV-B measurements over Canada, Europe and Japan: Trends and effects from changes in ozone, aerosols, clouds, and surface reflectivity. Comptes Rendus Geoscience,350(7), 393–402. https://doi.org/10.1016/j.crte.2018.07.011. 30th Anniversary of the Montreal Protocol: From the safeguard of the ozone layer to the protection of the Earth Climate

Fountoulakis, I., Diémoz, H., Siani, A.-M., Laschewski, G., Filippa, G., Arola, A., Bais, A. F., De Backer, H., Lakkala, K., Webb, A. R., De Bock, V., Karppinen, T., Garane, K., Kapsomenakis, J., Koukouli, M.-E., & Zerefos, C. S. (2020). Solar UV irradiance in a changing climate: Trends in Europe and the significance of spectral monitoring in Italy. Environments, 7(1), 1–32. https://doi.org/10.3390/environments7010001

Article  Google Scholar 

Fountoulakis, I., Diémoz, H., Siani, A. M., Sarra, A., Meloni, D., & Sferlazzo, D. M. (2021). Variability and trends in surface solar spectral ultraviolet irradiance in Italy: on the influence of geopotential height and lower-stratospheric ozone. Atmospheric Chemistry and Physics, 21(24), 18689–18705. https://doi.org/10.5194/acp-21-18689-2021

Article  CAS  Google Scholar 

Köpke, P., Bais, A., Balis, D., Buchwitz, M., Backer, H., Cabo, X., Eckert, P., Eriksen, P., Gillotay, D., Heikkilä, A., Koskela, T., Lapeta, B., Litynska, Z., Lorente, J., Mayer, B., Renaud, A., Ruggaber, A., Schauberger, G., Seckmeyer, G., & Weber, M. (1998). Comparison of models used for UV Index calculations. Photochemistry and Photobiology, 67, 657–662. https://doi.org/10.1111/j.1751-1097.1998.tb09470.x

Article  Google Scholar 

An empirical model to estimate ultraviolet erythemal transmissivity. (2009). Antón, M., A, S., Cancillo, M., García. J. Annales Geophysicae, 27, 1387–1398. https://doi.org/10.5194/angeo-27-1387-2009

Article  Google Scholar 

Lindfors, A., Kaurola, J., Arola, A., Koskela, T., Lakkala, K., Josefsson, W., Olseth, J., & Johnsen, B. (2007). A method for reconstruction of past UV radiation based on radiative transfer modeling: Applied to four stations in northern Europe. Journal of Geophysical Research, 112, 23201. https://doi.org/10.1029/2007JD008454

Article  CAS  Google Scholar 

Rieder, H., Holawe, F., Simic, S., M, B., Krzyścin, J., Wagner, J., Schmalwieser, A., P, W.: Reconstruction of erythemal UV-doses for two stations in Austria: A comparison between alpine and urban regions. Atmospheric Chemistry and Physics 8, 6309–6323 (2008) https://doi.org/10.5194/acp-8-6309-2008

Bilbao, J., Román, R., De Miguel, A., & Mateos, D. (2011). Long-term solar erythemal UV irradiance data reconstruction in Spain using a semiempirical method. Journal of Geophysical Research: Atmospheres, 116, 22211. https://doi.org/10.1029/2011JD015836

Article  CAS  Google Scholar 

Zhang, X., Hu, B., Wang, Y., & Lu, J. (2015). Reconstruction of daily ultraviolet radiation for nine observation stations in China. Journal of Atmospheric Chemistry, 71, 303–319. https://doi.org/10.1007/s10874-015-9296-2

Article  CAS  Google Scholar 

Krzyścin, J. W., & Sobolewski, P. S. (2018). Trends in erythemal doses at the Polish polar station, Hornsund, Svalbard based on the homogenized measurements (1996–2016) and reconstructed data (1983–1995). Atmospheric Chemistry and Physics, 18(1), 1–11. https://doi.org/10.5194/acp-18-1-2018

Article  CAS  Google Scholar 

Čížková, K., Láska, K., Metelka, L., & Staněk, M. (2018). Reconstruction and analysis of erythemal UV radiation time series from Hradec Králové (Czech Republic) over the past 50 years. Atmospheric Chemistry and Physics, 18(3), 1805–1818. https://doi.org/10.5194/acp-18-1805-2018

Article  CAS  Google Scholar 

Kosmopoulos, P. G., Kazadzis, S., Schmalwieser, A. W., Raptis, P. I., Papachristopoulou, K., Fountoulakis, I., Masoom, A., Bais, A. F., Bilbao, J., Blumthaler, M., Kreuter, A., Siani, A. M., Eleftheratos, K., Topaloglou, C., Gröbner, J., Johnsen, B., Svendby, T. M., Vilaplana, J. M., Doppler, L., … Kontoes, C. (2021). Real-time UV index retrieval in Europe using earth observation-based techniques: system description and quality assessment. Atmospheric Measurement Techniques, 14(8), 5657–5699. https://doi.org/10.5194/amt-14-5657-2021

Article  Google Scholar 

Moreno, J. C., Serrano, M. A., Lorente, M., Cañada, J., & Utrillas, M. P. (2013). An empirical model of erythemal ultraviolet radiation in the city of Valencia. Spain. Photochemical & Photobiological Sciences, 12(9), 1707–16.

Article  CAS  Google Scholar 

Rieder, H. E., Staehelin, J., Weihs, P., Vuilleumier, L., Maeder, J. A., Holawe, F., Blumthaler, M., Lindfors, A., Peter, T., Simic, S., Spichtinger, P., Wagner, J. E., Walker, D., & Ribatet, M. (2010). Relationship between high daily erythemal UV doses, total ozone, surface albedo and cloudiness: An analysis of 30 years of data from Switzerland and Austria. Atmospheric Research, 98(1), 9–20. https://doi.org/10.1016/j.atmosres.2010.03.006

Article  CAS  Google Scholar 

Ahmed, A. A. M., Ahmed, M. H., Saha, S., Ahmed, O., & Sutradhar, A. (2022). Optimization algorithms as training approach with hybrid deep learning methods to develop an ultraviolet index forecasting model. Stochastic Environmental Research and Risk Assessment, 36, 3011–3039. https://doi.org/10.1007/s00477-022-02177-3

Article  PubMed  PubMed Central  Google Scholar 

Utrillas, M., Marín, M. J., Esteve, A., Salazar, G., Suárez, H., Gandía, S., & Martínez-Lozano, J. (2018). Relationship between erythemal UV and broadband solar irradiation at high altitude in northwestern Argentina. Energy, 162, 136–147. https://doi.org/10.1016/j.energy.2018.08.021

Article  Google Scholar 

Kondratyev, K., & Varotsos, C. (2000). Atmospheric Ozone Variability: Implications for Climate Change. Berlin: Human Health and Ecosystems. Springer.

Google Scholar 

Calbó, J., Pagàs, D., & González, J.-A. (2005). Empirical studies of cloud effects on UV radiation: A review. Reviews of Geophysics, 43(2), 2002. https://doi.org/10.1029/2004RG000155

Article  Google Scholar 

Cañada, J., Pedrós, G., López, A., & Boscá, J. V. (2000). Influences of the clearness index for the whole spectrum and of the relative optical air mass on UV solar irradiance for two locations in the Mediterranean area, Valencia and Cordoba. Journal of Geophysical Research: Atmospheres, 105(D4), 4759–4766. https://doi.org/10.1029/1999JD901106

Article  Google Scholar 

Foyo-Moreno, I., Alados, I., & Alados-Arboledas, L. (2007). Adaptation of an empirical model for erythemal ultraviolet irradiance. Annales Geophysicae, 25(7), 1499–1508. https://doi.org/10.5194/angeo-25-1499-2007

Article  Google Scholar 

Trepte, S., & Winkler, P. (2004). Reconstruction of erythemal UV irradiance and dose at Hohenpeissenberg (1968–2001) considering trends of total ozone, cloudiness and turbidity. Theoretical and Applied Climatology, 77(3–4), 159–171. https://doi.org/10.1007/s00704-004-0034-y

Article  Google Scholar 

Shazly, S., Kassem, K., Hassan, A., & El-Nobi, E. (2012). An empirical model to estimate UV index in some upper Egypt regions. Resources and Environment, 2, 216–227. https://doi.org/10.5923/j.re.20120205.05

Article  Google Scholar 

Láska, K., Prošek, P., Budík, L., Budíková, M., & Milinevsky, G. (2009). Prediction of erythemally effective UVB radiation by means of nonlinear regression model. Environmetrics, 20(6), 633–646. https://doi.org/10.1002/env.968

Article  CAS  Google Scholar 

WHO: Global Solar UV Index: a Practical Guide, (2002). World Health Organization and World Meteorological Organization and United Nations Environment Programme and International Commission on Non-Ionizing Radiation Protection. https://www.who.int/publications/i/item/9241590076

ISO/CIE: Erythema Reference Action Spectrum and Standard Erythema Dose (ISO/CIE 17166:2019), Vernier (2019). International Organization for Standardization and International Commission on Illumination. https://www.iso.org

Rimmer, J. S., Redondas, A., & Karppinen, T. (2018). EuBrewNet - A European brewer network (COST Action ES1207), an overview. Atmospheric Chemistry and Physics, 18(14), 10347–10353. https://doi.org/10.5194/acp-18-10347-2018

Article  CAS 

留言 (0)

沒有登入
gif