How should cardiac xenotransplantation be initiated in Japan?

Griffith BP, Goerlich CE, Singh AK, Rothblatt M, Lau CL, Shah A, et al. Genetically modified porcine-to-human cardiac xenotransplantation. N Engl J Med. 2022;387:35–44.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Montgomery RA, Stern JM, Lonze BE, Tatapudi VS, Mangiola M, Wu M, et al. Results of two cases of pig-to-human kidney xenotransplantation. N Engl J Med. 2022;386:1889–98.

Article  CAS  PubMed  Google Scholar 

Mohiuddin MM, Goerlich CE, Singh AK, Zhang T, Tatarov I, Lewis B, et al. Progressive genetic modifications of porcine cardiac xenografts extend survival to 9 months. Xenotransplantation. 2022;29: e12744.

Article  PubMed  PubMed Central  Google Scholar 

Adams AB, Lovasik BP, Faber DA, Burlak C, Breeden C, Estrada JL, et al. Anti-C5 antibody tesidolumab reduces early antibody-mediated rejection and prolongs survival in renal xenotransplantation. Ann Surg. 2021;274:473–80.

Article  PubMed  Google Scholar 

Miyagawa S, Murakami H, Takahagi Y, Nakai R, Yamada M, Murase A, et al. Remodeling of the major pig xenoantigen by N-acetylglucosaminyltransferase III in transgenic pig. J Biol Chem. 2001;276:39310–9.

Article  CAS  PubMed  Google Scholar 

Fujita T, Miyagawa S, Ezoe K, Saito T, Sato N, Takahagi Y, et al. Skin graft of double transgenic pigs of N-acetylglucosaminyltransferase III (GnT-III) and DAF (CD55) genes survived in cynomolgus monkey for 31 days. Transpl Immunol. 2004;13:259–64.

Article  CAS  PubMed  Google Scholar 

Komoda H, Miyagawa S, Omori T, Takahagi Y, Murakami H, Shigehisa T, et al. Survival of adult islet grafts from transgenic pigs with N-acetylglucosaminyltransferase-III (GnT-III) in cynomolgus monkeys. Xenotransplantation. 2005;12:209–16.

Article  PubMed  Google Scholar 

Miyagawa S, Maeda A, Toyama C, Kogata S, Okamatsu C, Yamamoto R, et al. Aspects of the complement system in new era of xenotransplantation. Front Immunol. 2022;13: 860165.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maeda A, Kogata S, Toyama C, Lo PC, Okamatsu C, Yamamoto R, et al. The innate cellular immune response in xenotransplantation. Front Immunology. 2022;13: 858604.

Article  CAS  Google Scholar 

Murakami M, Suzuki Y, Tominaga T. Rapid globalization of medical device clinical development programs in Japan—the case of drug-eluting stents. Circ J. 2018;82:636–43.

Article  PubMed  Google Scholar 

The Ministry of Health, Labour and Welfare. Current status, problems and demands of the medical device industry (in Japanese). https://www.mhlw.go.jp/stf/shingi/2r9852000001y7lc-att/2r9852000001y7xb.pdf. Accessed 5 Jan 2024.

Bauersachs J. Heart failure drug treatment: the fantastic four. Eur Heart J. 2021;42:681–3.

Article  PubMed  PubMed Central  Google Scholar 

Jorde UP, Saeed O, Koehl D, Morris AA, Wood KL, Meyer DM, et al. The society of thoracic surgeons interagency registry for mechanically sssisted circulatory support 2023 annual report: focus on magnetically levitated devices. Ann Thorac Surg. 2023;117:33–44.

Article  PubMed  Google Scholar 

Hsich E, Singh TP, Cherikh WS, Harhay MO, Hayes D Jr, Perch M, et al. The international thoracic organ transplant registry of the international society for heart and lung transplantation: Thirty-ninth adult heart transplantation report-2022; focus on transplant for restrictive heart disease. J Heart Lung Transplant. 2022;41:1366–75.

Article  PubMed  PubMed Central  Google Scholar 

Japan Organt Transplantation Network. Heart Transplant Registry of Japan. http://www.jsht.jp/registry/japan/. Accessed 5 Jan 2024.

Japan Organt Transplantation Network. Number of registered transplant applicants. https://www.jotnw.or.jp/data/. Accessed 5 Jan 2024.

Council of Academic Societies Related to Mechanically Assisted Circulatory Support. J-MACS statistical report. https://j-vad.jp/document/statistical_report_20230215.pdf. Accessed 5 Jan 2024.

McNamara N, Narroway H, Williams M, Brookes J, Farag J, Cistulli D, et al. Contemporary outcomes of continuous-flow left ventricular assist devices-a systematic review. Ann Cardiothorac Surgery. 2021;10(2):186–208.

Article  Google Scholar 

Mehra MR, Uriel N, Naka Y, Cleveland JC Jr, Yuzefpolskaya M, Salerno CT, et al. A fully magnetically levitated left ventricular assist device-Final report. N Engl J Med. 2019;380:1618–27.

Article  PubMed  Google Scholar 

Saito S, Toda K, Nakamura T, Miyagawa S, Yoshikawa Y, Hata H, et al. Rescuing patients with severe biventricular failure in the era of continuous-flow left ventricular assist device. Circ J. 2019;83:379–85.

Article  PubMed  Google Scholar 

Saito S, Sakaguchi T, Miyagawa S, Yoshikawa Y, Yamauchi T, Ueno T, et al. Biventricular support using implantable continuous-flow ventricular assist devices. J Heart Lung Transplant. 2011;30:475–8.

Article  PubMed  Google Scholar 

Saito S, Sakaguchi T, Sawa Y. Clinical report of long-term support with dual Jarvik 2000 biventricular assist device. J Heart Lung Transplant. 2011;30:845–7.

Article  PubMed  Google Scholar 

Marasco S, Simon AR, Tsui S, Schramm R, Eifert S, Hagl CM, et al. International experience using a durable, centrifugal-flow ventricular assist device for biventricular support. J Heart Lung Transplant. 2020;39:1372–9.

Article  PubMed  Google Scholar 

Farag J, Woldendorp K, McNamara N, Bannon PG, Marasco SF, Loforte A, et al. Contemporary outcomes of continuous-flow biventricular assist devices. Ann Cardiothorac Surg. 2021;10:311–28.

Article  PubMed  PubMed Central  Google Scholar 

Arabía FA, Cantor RS, Koehl DA, Kasirajan V, Gregoric I, Moriguchi JD, et al. Interagency registry for mechanically assisted circulatory support report on the total artificial heart. J Heart Lung Transplant. 2018;37:1304–12.

Article  PubMed  Google Scholar 

Miyagawa S, Sawa Y. Building a new strategy for treating heart failure using Induced Pluripotent Stem Cells. J Cardiol. 2018;72:445–8.

Article  PubMed  Google Scholar 

Miyagawa S, Kainuma S, Kawamura T, Suzuki K, Ito Y, Iseoka H, et al. Case report: Transplantation of human induced pluripotent stem cell-derived cardiomyocyte patches for ischemic cardiomyopathy. Front Cardiovasc Med. 2022;9: 950829.

Article  PubMed  PubMed Central  Google Scholar 

Liu N, Ye X, Yao B, Zhao M, Wu P, Liu G, et al. Advances in 3D bioprinting technology for cardiac tissue engineering and regeneration. Bioact Mater. 2021;6:1388–401.

CAS  PubMed  Google Scholar 

Barnard CN. The operation. A human cardiac transplant: an interim report of a successful operation performed at Groote Schuur Hospital, Cape Town. S Afr Med J. 1967;41:1271–4.

CAS  PubMed  Google Scholar 

Hardy JD, Kurrus FD, Chavez CM, Neely WA, Eraslan S, Turner MD, et al. Heart transplantation in man. Developmental studies and report of a case. JAMA. 1964;188:1132–40.

Article  CAS  PubMed  Google Scholar 

Taniguchi S, Cooper DK. Clinical xenotransplantation: past, present and future. Ann R Col Surg Engl. 1997;79:13–9.

CAS  Google Scholar 

Cooley DA, Hallman GL, Bloodwell RD, Nora JJ, Leachman RD. Human heart transplantation. Experience with twelve cases. Am J Cardiol. 1968;22:804–10.

Article  CAS  PubMed  Google Scholar 

Dureau, Fradin, Gonin, Michaud, Mikaeloff. Heart and liver transplantations (in French). Lyon Med. 1969;222:585–6.

Barnard CN, Wolpowitz A, Losman JG. Heterotopic cardiac transplantation with a xenograft for assistance of the left heart in cardiogenic shock after cardiopulmonary bypass. S Afr Med J. 1977;52:1035–8.

CAS  PubMed  Google Scholar 

Bailey LL, Nehlsen-Cannarella SL, Concepcion W, Jolley WB. Baboon-to-human cardiac xenotransplantation in a neonate. JAMA. 1985;254:3321–9.

Article  CAS  PubMed  Google Scholar 

Czaplicki J, Blońska B, Religa Z. The lack of hyperacute xenogeneic heart transplant rejection in a human. J Heart Lung Transplant. 1992;11:393–7.

CAS  PubMed  Google Scholar 

Jayaraman KS. Pig heart transplant surgeon held in jail. Nature. 1997;385:378.

Article  CAS  PubMed  Google Scholar 

Kounang N. Groundbreaking transplant of pig heart into living recipient is performed for the second time ever. CNN health. https://edition.cnn.com/2023/09/22/health/pig-heart-transplant-living-patient-second-time-ever/index.html. Accessed 5 Jan 2024

Reichart B, Langin M, Denner J, Schwinzer R, Cowan PJ, Wolf E. Pathways to clinical cardiac xenotransplantation. Transplantation. 2021;105:1930–43.

Article  PubMed  Google Scholar 

Lexer G, Cooper DK, Rose AG, Wicomb WN, Rees J, Keraan M, et al. Hyperacute rejection in a discordant (pig to baboon) cardiac xenograft model. J Heart Transplant. 1986;5:411–8.

CAS  PubMed  Google Scholar 

Rose AG, Cooper DK, Human PA, Reichenspurner H, Reichart B. Histopathology of hyperacute rejection of the heart: experimental and clinical observations in allografts and xenografts. J Heart Lung Transplant. 1991;10:223–34.

CAS  PubMed  Google Scholar 

Rose AG, Cooper DK. A histopathologic grading system of hyperacute (humoral, antibody-mediated) cardiac xenograft and allograft rejection. J Heart Lung Transplant. 1996;15:804–17.

CAS  PubMed  Google Scholar 

Rose AG, Cooper DK. Venular thrombosis is the key event in the pathogenesis of antibody-mediated cardiac rejection. Xenotransplantation. 2000;7:31–41.

Article  CAS  PubMed  Google Scholar 

Galili U, Shohet SB, Kobrin E, Stults CL, Macher BA.

留言 (0)

沒有登入
gif