Impact of deep learning image reconstruction on volumetric accuracy and image quality of pulmonary nodules with different morphologies in low-dose CT

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

Article  PubMed  Google Scholar 

de Koning HJ, van der Aalst CM, de Jong PA, Scholten ET, Nackaerts K, Heuvelmans MA, et al. Reduced lung-cancer mortality with volume CT screening in a randomized trial. N Eng J Med. 2020;382(6):503–13.

Article  Google Scholar 

Zhao YR, Xie X, de Koning HJ, Mali WP, Vliegenthart R, Oudkerk M. NELSON lung cancer screening study. Cancer Imaging. 2011;11(1A):S79.

Article  PubMed Central  Google Scholar 

Team NLSTR. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Eng J Med. 2011;365(5):395–409.

Article  Google Scholar 

Kauczor H-U, Baird A-M, Blum TG, Bonomo L, Bostantzoglou C, Burghuber O, et al. ESR/ERS statement paper on lung cancer screening. Eur Radiol. 2020;30(6):3277–94.

Article  PubMed  Google Scholar 

Paci E, Puliti D, Pegna AL, Carrozzi L, Picozzi G, Falaschi F, et al. Mortality, survival and incidence rates in the ITALUNG randomised lung cancer screening trial. Thorax. 2017;72(9):825–31.

Article  PubMed  Google Scholar 

Infante M, Sestini S, Galeone C, Marchianò A, Lutman FR, Angeli E, et al. Lung cancer screening with low-dose spiral computed tomography: evidence from a pooled analysis of two Italian randomized trials. Eur J Cancer Prev. 2017;26(4):324.

Article  PubMed  PubMed Central  Google Scholar 

Pastorino U, Rossi M, Rosato V, Marchiano A, Sverzellati N, Morosi C, et al. Annual or biennial CT screening versus observation in heavy smokers. Eur J Cancer Prev. 2012;21(3):308–15.

Article  PubMed  Google Scholar 

Baldwin D, Duffy S, Wald N, Page R, Hansell D, Field J. UK Lung Screen (UKLS) nodule management protocol: modelling of a single screen randomised controlled trial of low-dose CT screening for lung cancer. Thorax. 2011;66(4):308–13.

Article  CAS  PubMed  Google Scholar 

Zhang M, Qi W, Sun Y, Jiang Y, Liu X, Hong N. Screening for lung cancer using sub-millisievert chest cT with iterative reconstruction algorithm: Image quality and nodule detectability. Brit J Radiol. 2018;91(1090):20170658.

Article  PubMed  Google Scholar 

Goto M, Nagayama Y, Sakabe D, Emoto T, Kidoh M, Oda S, et al. Lung-optimized deep-learning-based reconstruction for ultralow-dose CT. Acad Radiol. 2023;30(3):431–40.

Article  PubMed  Google Scholar 

McLeavy C, Chunara M, Gravell R, Rauf A, Cushnie A, Talbot CS, et al. The future of CT: deep learning reconstruction. Clin Radiol. 2021;76(6):407–15.

Article  CAS  PubMed  Google Scholar 

Pontino SP. State of the Art: Iterative CT Reconstruction Techniques. Radiology. 2015;276.

Willemink MJ, Noël PB. The evolution of image reconstruction for CT—from filtered back projection to artificial intelligence. Eur Radiol. 2019;29:2185–95.

Article  PubMed  Google Scholar 

Franck C, Zhang G, Deak P, Zanca F. Preserving image texture while reducing radiation dose with a deep learning image reconstruction algorithm in chest CT: a phantom study. Physica Medica. 2021;81:86–93.

Article  PubMed  Google Scholar 

Tanenbaum LN. Artificial intelligence and medical imaging: image acquisition and reconstruction. Appl Radiol. 2020;49(3):34–5.

Article  Google Scholar 

Greffier J, Hamard A, Pereira F, Barrau C, Pasquier H, Beregi JP, et al. Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study. Eur Radiol. 2020;30(7):3951–9.

Article  PubMed  Google Scholar 

Kim H, Park CM, Song YS, Lee SM, Goo JM. Influence of radiation dose and iterative reconstruction algorithms for measurement accuracy and reproducibility of pulmonary nodule volumetry: a phantom study. Eur J Radiol. 2014;83(5):848–57.

Article  PubMed  Google Scholar 

Arndt C, Güttler F, Heinrich A, et al. Deep Learning CT Image Reconstruction in Clinical Practice. Fortschr Röntgenstr. 2021;193:252–61.

Jiang B, Li N, Shi X, Zhang S, Li J, de Bock GH, et al. Deep learning reconstruction shows better lung nodule detection for ultra–low-dose chest CT. Radiology. 2022;303(1):202–12.

Article  PubMed  Google Scholar 

Franck C, Snoeckx A, Spinhoven M, El Addouli H, Nicolay S, Van Hoyweghen A, et al. Pulmonary nodule detection in chest Ct using a deep learning-based reconstruction algorithm. Radiat Prot Dosimetry. 2021;195(3–4):158–63.

Article  CAS  PubMed  Google Scholar 

Racine D, Brat H, Dufour B, Steity J, Hussenot M, Rizk B, et al. Image texture, low contrast liver lesion detectability and impact on dose: Deep learning algorithm compared to partial model-based iterative reconstruction. Eur J Radiol. 2021;141: 109808.

Article  CAS  PubMed  Google Scholar 

Snoeckx A, Reyntiens P, Desbuquoit D, Spinhoven MJ, Van Schil PE, van Meerbeeck JP, et al. Evaluation of the solitary pulmonary nodule: size matters, but do not ignore the power of morphology. Insights Imaging. 2018;9(1):73–86.

Article  PubMed  Google Scholar 

Sartorio C, Milanese G, Ledda RE, Tringali G, Balbi M, Milone F, et al. iameter versus volumetry: a narrative review on current recommendations to measure and monitor screening detected lung nodules. Growth. 2021;35:37.

Google Scholar 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2018;68(6):394-424.

Nair A, Dyer DS, Heuvelmans MA, Mashar M, Silva M, Hammer MM. Contextualizing the role of volumetric analysis in pulmonary nodule assessment: AJR expert panel narrative review. Am J Roentgenol. 2023;220(3):314–29.

Article  Google Scholar 

Baldwin DR, Callister ME. The British Thoracic Society guidelines on the investigation and management of pulmonary nodules. Thorax. 2015;70(8):794–8.

Article  PubMed  Google Scholar 

Oudkerk M, Devaraj A, Vliegenthart R, Henzler T, Prosch H, Heussel CP, et al. European position statement on lung cancer screening. Lancet Oncol. 2017;18(12):e754–66.

Article  PubMed  Google Scholar 

Higaki T, Nakamura Y, Zhou J, Yu Z, Nemoto T, Tatsugami F, et al. Deep learning reconstruction at CT: phantom study of the image characteristics. Acad Radiol. 2020;27(1):82–7.

Article  PubMed  Google Scholar 

Hata A, Yanagawa M, Yoshida Y, Miyata T, Kikuchi N, Honda O, et al. The image quality of deep-learning image reconstruction of chest CT images on a mediastinal window setting. Clin Radiol. 2021;76(2):e15–23.

Article  Google Scholar 

Kim JH, Yoon HJ, Lee E, Kim I, Cha YK, Bak SH. Validation of deep-learning image reconstruction for low-dose chest computed tomography scan: emphasis on image quality and noise. Korean J Radiol. 2021;22(1):131.

Article  PubMed  Google Scholar 

Singh R, Digumarthy SR, Muse VV, Kambadakone AR, Blake MA, Tabari A, et al. Image quality and lesion detection on deep learning reconstruction and iterative reconstruction of submillisievert chest and abdominal CT. Am J Roentgenol. 2020;214(3):566–73.

Article  Google Scholar 

LTD KKC. Multipurpose Chest Phantom N1 ‘LUNGMAN’product catalog. Available from: https://www.kyotokagaku.com/products/detail03/pdf/ph-1_catalog.pdf.

Hsieh J, Liu E, Nett B, Tang J, Thibault J-B, Sahney S. A new era of image reconstruction: TrueFidelity™. White Paper (JB68676XX), GE Healthcare. 2019.

Sirohey S. Lung VCAR: a technical description. GE Healthcare Web site, 2005. Citado en. 2007:24.

Team R. RStudio. PBC, Boston 2020. p. RStudio: Integrated Development Environment for R.

Team Rc. R. Vienna, Austria 2020. p. R: a language and environment for statistical computing.

Venables WNRB. Modern Applied Statistics with S. New York: Springer; 2002.

Book  Google Scholar 

Motulsky H. GraphPad Software for Windows. 8.0.2 ed. San Diego, California, USA: GraphPad Software.

Choe J, Lee SM, Do K-H, Lee G, Lee J-G, Lee SM, et al. Deep learning–based image conversion of CT reconstruction kernels improves radiomics reproducibility for pulmonary nodules or masses. Radiology. 2019;292(2):365–73.

Article  PubMed  Google Scholar 

Fu B, Wang G, Wu M, Li W, Zheng Y, Chu Z, et al. Influence of CT effective dose and convolution kernel on the detection of pulmonary nodules in different artificial intelligence software systems: A phantom study. Eur J Radiol. 2020;126:108928.

Article  PubMed  Google Scholar 

Greffier J, Frandon J, Si-Mohamed S, Dabli D, Hamard A, Belaouni A, et al. Comparison of two deep learning image reconstruction algorithms in chest CT images: a task-based image quality assessment on phantom data. Diagnost Intervent Imaging. 2022;103(1):21–30.

Article  Google Scholar 

留言 (0)

沒有登入
gif