Anderson KD, Guest JD, Dietrich WD, Bartlett Bunge M, Curiel R, Dididze M, Green BA, Khan A, Pearse DD, Saraf-Lavi E, Widerström-Noga E, Wood P, Levi AD (2017) Safety of autologous human Schwann cell transplantation in subacute thoracic spinal cord injury. J Neurotrauma 34(21):2950–2963. https://doi.org/10.1089/neu.2016.4895
Antonic A, Sena ES, Lees JS, Wills TE, Skeers P, Batchelor PE, Macleod MR, Howells DW (2013) Stem cell transplantation in traumatic spinal cord injury: a systematic review and meta-analysis of animal studies. PLoS Biol 11(12):e1001738. https://doi.org/10.1371/journal.pbio.1001738
Article PubMed PubMed Central Google Scholar
Badhiwala JH, Wilson JR, Witiw CD, Harrop JS, Vaccaro AR, Aarabi B, Grossman RG, Geisler FH, Fehlings MG (2021) The influence of timing of surgical decompression for acute spinal cord injury: a pooled analysis of individual patient data. Lancet Neurol 20(2):117–126. https://doi.org/10.1016/s1474-4422(20)30406-3
Article CAS PubMed Google Scholar
Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12(1):1–21. https://doi.org/10.1089/neu.1995.12.1
Article CAS PubMed Google Scholar
Chen J, Zhang Z, Liu J, Zhou R, Zheng X, Chen T, Wang L, Huang M, Yang C, Li Z, Yang C, Bai X, Jin D (2014) Acellular spinal cord scaffold seeded with bone marrow stromal cells protects tissue and promotes functional recovery in spinal cord-injured rats. J Neurosci Res 92(3):307–317. https://doi.org/10.1002/jnr.23311
Article CAS PubMed Google Scholar
Curt A, Van Hedel HJ, Klaus D, Dietz V (2008) Recovery from a spinal cord injury: significance of compensation, neural plasticity, and repair. J Neurotrauma 25(6):677–685. https://doi.org/10.1089/neu.2007.0468
Deng LX, Walker C, Xu XM (2015) Schwann cell transplantation and descending propriospinal regeneration after spinal cord injury. Brain Res 1619:104–114. https://doi.org/10.1016/j.brainres.2014.09.038
Article CAS PubMed Google Scholar
Deng WS, Ma K, Liang B, Liu XY, Xu HY, Zhang J, Shi HY, Sun HT, Chen XY, Zhang S (2020) Collagen scaffold combined with human umbilical cord-mesenchymal stem cells transplantation for acute complete spinal cord injury. Neural Regen Res 15(9):1686–1700. https://doi.org/10.4103/1673-5374.276340
Article CAS PubMed PubMed Central Google Scholar
Fitzharris M, Cripps RA, Lee BB (2014) Estimating the global incidence of traumatic spinal cord injury. Spinal Cord 52(2):117–122. https://doi.org/10.1038/sc.2013.135
Article CAS PubMed Google Scholar
Han IB, Thakor DK, Ropper AE, Yu D, Wang L, Kabatas S, Zeng X, Kim SW, Zafonte RD, Teng YD (2019) Physical impacts of PLGA scaffolding on hMSCs: recovery neurobiology insight for implant design to treat spinal cord injury. Exp Neurol 320:112980. https://doi.org/10.1016/j.expneurol.2019.112980
Article CAS PubMed Google Scholar
Hashimoto S, Nagoshi N, Shinozaki M, Nakanishi K, Suematsu Y, Shibata T, Kawai M, Kitagawa T, Ago K, Kamata Y, Yasutake K, Koya I, Ando Y, Minoda A, Shindo T, Shibata S, Matsumoto M, Nakamura M, Okano H (2023) Microenvironmental modulation in tandem with human stem cell transplantation enhances functional recovery after chronic complete spinal cord injury. Biomaterials 295:122002. https://doi.org/10.1016/j.biomaterials.2023.122002
Article CAS PubMed Google Scholar
Hashimoto S, Nagoshi N, Nakamura M, Okano H (2024) Regenerative medicine strategies for chronic complete spinal cord injury. Neural Regen Res 19(4):818–824. https://doi.org/10.4103/1673-5374.382230
Hassannejad Z, Sharif-Alhoseini M, Shakouri-Motlagh A, Vahedi F, Zadegan SA, Mokhatab M, Rezvan M, Saadat S, Shokraneh F, Rahimi-Movaghar V (2016) Potential variables affecting the quality of animal studies regarding pathophysiology of traumatic spinal cord injuries. Spinal Cord 54(8):579–583. https://doi.org/10.1038/sc.2015.215
Article CAS PubMed Google Scholar
Hatami M, Mehrjardi NZ, Kiani S, Hemmesi K, Azizi H, Shahverdi A, Baharvand H (2009) Human embryonic stem cell-derived neural precursor transplants in collagen scaffolds promote recovery in injured rat spinal cord. Cytotherapy 11(5):618–630. https://doi.org/10.1080/14653240903005802
Article CAS PubMed Google Scholar
Hejcl A, Sedý J, Kapcalová M, Toro DA, Amemori T, Lesný P, Likavcanová-Mašínová K, Krumbholcová E, Prádný M, Michálek J, Burian M, Hájek M, Jendelová P, Syková E (2010) HPMA-RGD hydrogels seeded with mesenchymal stem cells improve functional outcome in chronic spinal cord injury. Stem Cells Dev 19(10):1535–1546. https://doi.org/10.1089/scd.2009.0378
Article CAS PubMed Google Scholar
Hosseini SM, Sharafkhah A, Koohi-Hosseinabadi O, Semsar-Kazerooni M (2016) Transplantation of neural stem cells cultured in alginate scaffold for spinal cord injury in rats. Asian Spine J 10(4):611–618. https://doi.org/10.4184/asj.2016.10.4.611
Article PubMed PubMed Central Google Scholar
Ide C, Nakai Y, Nakano N, Seo TB, Yamada Y, Endo K, Noda T, Saito F, Suzuki Y, Fukushima M, Nakatani T (2010) Bone marrow stromal cell transplantation for treatment of sub-acute spinal cord injury in the rat. Brain Res 1332:32–47. https://doi.org/10.1016/j.brainres.2010.03.043
Article CAS PubMed Google Scholar
Jiao G, Lou G, Mo Y, Pan Y, Zhang Z, Guo R, Li Z (2017) A combination of GDNF and hUCMSC transplantation loaded on SF/AGs composite scaffolds for spinal cord injury repair. Mater Sci Eng C 74:230–237. https://doi.org/10.1016/j.msec.2016.12.017
Karamouzian S, Nematollahi-Mahani SN, Nakhaee N, Eskandary H (2012) Clinical safety and primary efficacy of bone marrow mesenchymal cell transplantation in subacute spinal cord injured patients. Clin Neurol Neurosurg 114(7):935–939. https://doi.org/10.1016/j.clineuro.2012.02.003
Kim YC, Kim YH, Kim JW, Ha KY (2016) Transplantation of mesenchymal stem cells for acute spinal cord injury in rats: comparative study between intralesional injection and scaffold based transplantation. J Korean Med Sci 31(9):1373–1382. https://doi.org/10.3346/jkms.2016.31.9.1373
Article CAS PubMed PubMed Central Google Scholar
Kubinová S, Syková E (2010) Nanotechnologies in regenerative medicine. Minim Invasive Ther Allied Technol 19(3):144–156. https://doi.org/10.3109/13645706.2010.481398
Li L, Zhang Y, Mu J, Chen J, Zhang C, Cao H, Gao J (2020) Transplantation of human mesenchymal stem-cell-derived exosomes immobilized in an adhesive hydrogel for effective treatment of spinal cord injury. Nano Lett 20(6):4298–4305. https://doi.org/10.1021/acs.nanolett.0c00929
Article CAS PubMed Google Scholar
Libro R, Bramanti P, Mazzon E (2017) The combined strategy of mesenchymal stem cells and tissue-engineered scaffolds for spinal cord injury regeneration. Exp Ther Med 14(4):3355–3368. https://doi.org/10.3892/etm.2017.4939
Article CAS PubMed PubMed Central Google Scholar
Liu J, Chen J, Liu B, Yang C, Xie D, Zheng X, Xu S, Chen T, Wang L, Zhang Z, Bai X, Jin D (2013) Acellular spinal cord scaffold seeded with mesenchymal stem cells promotes long-distance axon regeneration and functional recovery in spinal cord injured rats. J Neurol Sci 325(1–2):127–136. https://doi.org/10.1016/j.jns.2012.11.022
Liu J, Chen Q, Zhang Z, Zheng Y, Sun X, Cao X, Gong A, Cui Y, He Q, Jiang P (2013) Fibrin scaffolds containing ectomesenchymal stem cells enhance behavioral and histological improvement in a rat model of spinal cord injury. Cells Tissues Organs 198(1):35–46. https://doi.org/10.1159/000351665
Article CAS PubMed Google Scholar
Liu Y, Ye H, Satkunendrarajah K, Yao GS, Bayon Y, Fehlings MG (2013) A self-assembling peptide reduces glial scarring, attenuates post-traumatic inflammation and promotes neurological recovery following spinal cord injury. Acta Biomater 9(9):8075–8088. https://doi.org/10.1016/j.actbio.2013.06.001
Article CAS PubMed Google Scholar
Liu C, Huang Y, Pang M, Yang Y, Li S, Liu L, Shu T, Zhou W, Wang X, Rong L, Liu B (2015) Tissue-engineered regeneration of completely transected spinal cord using induced neural stem cells and gelatin-electrospun poly (lactide-co-glycolide)/polyethylene glycol scaffolds. PLoS ONE 10(3):e0117709. https://doi.org/10.1371/journal.pone.0117709
Article CAS PubMed PubMed Central Google Scholar
Liu D, Li X, Xiao Z, Yin W, Zhao Y, Tan J, Chen B, Jiang X, Dai J (2019) Different functional bio-scaffolds share similar neurological mechanism to promote locomotor recovery of canines with complete spinal cord injury. Biomaterials 214:119230. https://doi.org/10.1016/j.biomaterials.2019.119230
Article CAS PubMed Google Scholar
Liu S, Xie YY, Wang B (2019) Role and prospects of regenerative biomaterials in the repair of spinal cord injury. Neural Regen Res 14(8):1352–1363. https://doi.org/10.4103/1673-5374.253512
Article CAS PubMed PubMed Central Google Scholar
Liu S, Yang H, Chen D, Xie Y, Tai C, Wang L, Wang P, Wang B (2022) Three-dimensional bioprinting sodium alginate/gelatin scaffold combined with neural stem cells and oligodendrocytes markedly promoting nerve regeneration after spinal cord injury. Regen Biomater 9:rbac038. https://doi.org/10.1093/rb/rbac038
Article CAS PubMed PubMed Central Google Scholar
Lv B, Zhang X, Yuan J, Chen Y, Ding H, Cao X, Huang A (2021) Biomaterial-supported MSC transplantation enhances cell–cell communication for spinal cord injury. Stem Cell Res Therapy 12(1):36. https://doi.org/10.1186/s13287-020-02090-y
留言 (0)