The Efficacy of Different Material Scaffold-Guided Cell Transplantation in the Treatment of Spinal Cord Injury in Rats: A Systematic Review and Network Meta-analysis

Anderson KD, Guest JD, Dietrich WD, Bartlett Bunge M, Curiel R, Dididze M, Green BA, Khan A, Pearse DD, Saraf-Lavi E, Widerström-Noga E, Wood P, Levi AD (2017) Safety of autologous human Schwann cell transplantation in subacute thoracic spinal cord injury. J Neurotrauma 34(21):2950–2963. https://doi.org/10.1089/neu.2016.4895

Article  PubMed  Google Scholar 

Antonic A, Sena ES, Lees JS, Wills TE, Skeers P, Batchelor PE, Macleod MR, Howells DW (2013) Stem cell transplantation in traumatic spinal cord injury: a systematic review and meta-analysis of animal studies. PLoS Biol 11(12):e1001738. https://doi.org/10.1371/journal.pbio.1001738

Article  PubMed  PubMed Central  Google Scholar 

Badhiwala JH, Wilson JR, Witiw CD, Harrop JS, Vaccaro AR, Aarabi B, Grossman RG, Geisler FH, Fehlings MG (2021) The influence of timing of surgical decompression for acute spinal cord injury: a pooled analysis of individual patient data. Lancet Neurol 20(2):117–126. https://doi.org/10.1016/s1474-4422(20)30406-3

Article  CAS  PubMed  Google Scholar 

Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12(1):1–21. https://doi.org/10.1089/neu.1995.12.1

Article  CAS  PubMed  Google Scholar 

Chen J, Zhang Z, Liu J, Zhou R, Zheng X, Chen T, Wang L, Huang M, Yang C, Li Z, Yang C, Bai X, Jin D (2014) Acellular spinal cord scaffold seeded with bone marrow stromal cells protects tissue and promotes functional recovery in spinal cord-injured rats. J Neurosci Res 92(3):307–317. https://doi.org/10.1002/jnr.23311

Article  CAS  PubMed  Google Scholar 

Curt A, Van Hedel HJ, Klaus D, Dietz V (2008) Recovery from a spinal cord injury: significance of compensation, neural plasticity, and repair. J Neurotrauma 25(6):677–685. https://doi.org/10.1089/neu.2007.0468

Article  PubMed  Google Scholar 

Deng LX, Walker C, Xu XM (2015) Schwann cell transplantation and descending propriospinal regeneration after spinal cord injury. Brain Res 1619:104–114. https://doi.org/10.1016/j.brainres.2014.09.038

Article  CAS  PubMed  Google Scholar 

Deng WS, Ma K, Liang B, Liu XY, Xu HY, Zhang J, Shi HY, Sun HT, Chen XY, Zhang S (2020) Collagen scaffold combined with human umbilical cord-mesenchymal stem cells transplantation for acute complete spinal cord injury. Neural Regen Res 15(9):1686–1700. https://doi.org/10.4103/1673-5374.276340

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fitzharris M, Cripps RA, Lee BB (2014) Estimating the global incidence of traumatic spinal cord injury. Spinal Cord 52(2):117–122. https://doi.org/10.1038/sc.2013.135

Article  CAS  PubMed  Google Scholar 

Han IB, Thakor DK, Ropper AE, Yu D, Wang L, Kabatas S, Zeng X, Kim SW, Zafonte RD, Teng YD (2019) Physical impacts of PLGA scaffolding on hMSCs: recovery neurobiology insight for implant design to treat spinal cord injury. Exp Neurol 320:112980. https://doi.org/10.1016/j.expneurol.2019.112980

Article  CAS  PubMed  Google Scholar 

Hashimoto S, Nagoshi N, Shinozaki M, Nakanishi K, Suematsu Y, Shibata T, Kawai M, Kitagawa T, Ago K, Kamata Y, Yasutake K, Koya I, Ando Y, Minoda A, Shindo T, Shibata S, Matsumoto M, Nakamura M, Okano H (2023) Microenvironmental modulation in tandem with human stem cell transplantation enhances functional recovery after chronic complete spinal cord injury. Biomaterials 295:122002. https://doi.org/10.1016/j.biomaterials.2023.122002

Article  CAS  PubMed  Google Scholar 

Hashimoto S, Nagoshi N, Nakamura M, Okano H (2024) Regenerative medicine strategies for chronic complete spinal cord injury. Neural Regen Res 19(4):818–824. https://doi.org/10.4103/1673-5374.382230

Article  PubMed  Google Scholar 

Hassannejad Z, Sharif-Alhoseini M, Shakouri-Motlagh A, Vahedi F, Zadegan SA, Mokhatab M, Rezvan M, Saadat S, Shokraneh F, Rahimi-Movaghar V (2016) Potential variables affecting the quality of animal studies regarding pathophysiology of traumatic spinal cord injuries. Spinal Cord 54(8):579–583. https://doi.org/10.1038/sc.2015.215

Article  CAS  PubMed  Google Scholar 

Hatami M, Mehrjardi NZ, Kiani S, Hemmesi K, Azizi H, Shahverdi A, Baharvand H (2009) Human embryonic stem cell-derived neural precursor transplants in collagen scaffolds promote recovery in injured rat spinal cord. Cytotherapy 11(5):618–630. https://doi.org/10.1080/14653240903005802

Article  CAS  PubMed  Google Scholar 

Hejcl A, Sedý J, Kapcalová M, Toro DA, Amemori T, Lesný P, Likavcanová-Mašínová K, Krumbholcová E, Prádný M, Michálek J, Burian M, Hájek M, Jendelová P, Syková E (2010) HPMA-RGD hydrogels seeded with mesenchymal stem cells improve functional outcome in chronic spinal cord injury. Stem Cells Dev 19(10):1535–1546. https://doi.org/10.1089/scd.2009.0378

Article  CAS  PubMed  Google Scholar 

Hosseini SM, Sharafkhah A, Koohi-Hosseinabadi O, Semsar-Kazerooni M (2016) Transplantation of neural stem cells cultured in alginate scaffold for spinal cord injury in rats. Asian Spine J 10(4):611–618. https://doi.org/10.4184/asj.2016.10.4.611

Article  PubMed  PubMed Central  Google Scholar 

Ide C, Nakai Y, Nakano N, Seo TB, Yamada Y, Endo K, Noda T, Saito F, Suzuki Y, Fukushima M, Nakatani T (2010) Bone marrow stromal cell transplantation for treatment of sub-acute spinal cord injury in the rat. Brain Res 1332:32–47. https://doi.org/10.1016/j.brainres.2010.03.043

Article  CAS  PubMed  Google Scholar 

Jiao G, Lou G, Mo Y, Pan Y, Zhang Z, Guo R, Li Z (2017) A combination of GDNF and hUCMSC transplantation loaded on SF/AGs composite scaffolds for spinal cord injury repair. Mater Sci Eng C 74:230–237. https://doi.org/10.1016/j.msec.2016.12.017

Article  CAS  Google Scholar 

Karamouzian S, Nematollahi-Mahani SN, Nakhaee N, Eskandary H (2012) Clinical safety and primary efficacy of bone marrow mesenchymal cell transplantation in subacute spinal cord injured patients. Clin Neurol Neurosurg 114(7):935–939. https://doi.org/10.1016/j.clineuro.2012.02.003

Article  PubMed  Google Scholar 

Kim YC, Kim YH, Kim JW, Ha KY (2016) Transplantation of mesenchymal stem cells for acute spinal cord injury in rats: comparative study between intralesional injection and scaffold based transplantation. J Korean Med Sci 31(9):1373–1382. https://doi.org/10.3346/jkms.2016.31.9.1373

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kubinová S, Syková E (2010) Nanotechnologies in regenerative medicine. Minim Invasive Ther Allied Technol 19(3):144–156. https://doi.org/10.3109/13645706.2010.481398

Article  PubMed  Google Scholar 

Li L, Zhang Y, Mu J, Chen J, Zhang C, Cao H, Gao J (2020) Transplantation of human mesenchymal stem-cell-derived exosomes immobilized in an adhesive hydrogel for effective treatment of spinal cord injury. Nano Lett 20(6):4298–4305. https://doi.org/10.1021/acs.nanolett.0c00929

Article  CAS  PubMed  Google Scholar 

Libro R, Bramanti P, Mazzon E (2017) The combined strategy of mesenchymal stem cells and tissue-engineered scaffolds for spinal cord injury regeneration. Exp Ther Med 14(4):3355–3368. https://doi.org/10.3892/etm.2017.4939

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu J, Chen J, Liu B, Yang C, Xie D, Zheng X, Xu S, Chen T, Wang L, Zhang Z, Bai X, Jin D (2013) Acellular spinal cord scaffold seeded with mesenchymal stem cells promotes long-distance axon regeneration and functional recovery in spinal cord injured rats. J Neurol Sci 325(1–2):127–136. https://doi.org/10.1016/j.jns.2012.11.022

Article  PubMed  Google Scholar 

Liu J, Chen Q, Zhang Z, Zheng Y, Sun X, Cao X, Gong A, Cui Y, He Q, Jiang P (2013) Fibrin scaffolds containing ectomesenchymal stem cells enhance behavioral and histological improvement in a rat model of spinal cord injury. Cells Tissues Organs 198(1):35–46. https://doi.org/10.1159/000351665

Article  CAS  PubMed  Google Scholar 

Liu Y, Ye H, Satkunendrarajah K, Yao GS, Bayon Y, Fehlings MG (2013) A self-assembling peptide reduces glial scarring, attenuates post-traumatic inflammation and promotes neurological recovery following spinal cord injury. Acta Biomater 9(9):8075–8088. https://doi.org/10.1016/j.actbio.2013.06.001

Article  CAS  PubMed  Google Scholar 

Liu C, Huang Y, Pang M, Yang Y, Li S, Liu L, Shu T, Zhou W, Wang X, Rong L, Liu B (2015) Tissue-engineered regeneration of completely transected spinal cord using induced neural stem cells and gelatin-electrospun poly (lactide-co-glycolide)/polyethylene glycol scaffolds. PLoS ONE 10(3):e0117709. https://doi.org/10.1371/journal.pone.0117709

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu D, Li X, Xiao Z, Yin W, Zhao Y, Tan J, Chen B, Jiang X, Dai J (2019) Different functional bio-scaffolds share similar neurological mechanism to promote locomotor recovery of canines with complete spinal cord injury. Biomaterials 214:119230. https://doi.org/10.1016/j.biomaterials.2019.119230

Article  CAS  PubMed  Google Scholar 

Liu S, Xie YY, Wang B (2019) Role and prospects of regenerative biomaterials in the repair of spinal cord injury. Neural Regen Res 14(8):1352–1363. https://doi.org/10.4103/1673-5374.253512

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu S, Yang H, Chen D, Xie Y, Tai C, Wang L, Wang P, Wang B (2022) Three-dimensional bioprinting sodium alginate/gelatin scaffold combined with neural stem cells and oligodendrocytes markedly promoting nerve regeneration after spinal cord injury. Regen Biomater 9:rbac038. https://doi.org/10.1093/rb/rbac038

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lv B, Zhang X, Yuan J, Chen Y, Ding H, Cao X, Huang A (2021) Biomaterial-supported MSC transplantation enhances cell–cell communication for spinal cord injury. Stem Cell Res Therapy 12(1):36. https://doi.org/10.1186/s13287-020-02090-y

留言 (0)

沒有登入
gif