[18F]AlF-NOTA-PCP2: a novel PET/CT tracer for enhanced PD-L1 heterogeneity imaging and comparative analysis with [18F]AlF-NOTA-WL12 in glioblastoma xenografts

Noorani I, Mischel PS, Swanton C. Leveraging extrachromosomal DNA to fine-tune trials of targeted therapy for glioblastoma: opportunities and challenges. Nat Rev Clin Oncol. 2022;19(11):733–43.

Article  CAS  PubMed  Google Scholar 

Sharma P, et al. Immune checkpoint therapy-current perspectives and future directions. Cell. 2023;186(8):1652–69.

Article  CAS  PubMed  Google Scholar 

Reardon DA, et al. Effect of Nivolumab vs Bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 phase 3 Randomized Clinical Trial. JAMA Oncol. 2020;6(7):1003–10.

Article  PubMed  Google Scholar 

Zhao J, et al. Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nat Med. 2019;25(3):462–9.

Article  PubMed  PubMed Central  Google Scholar 

Schalper KA, et al. Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. Nat Med. 2019;25(3):470–6.

Article  CAS  PubMed  Google Scholar 

Venkataramani V, et al. Glioblastoma hijacks neuronal mechanisms for brain invasion. Cell. 2022;185(16):2899–e291731.

Article  CAS  PubMed  Google Scholar 

Broekman ML, et al. Multidimensional communication in the microenvirons of glioblastoma. Nat Rev Neurol. 2018;14(8):482–95.

Article  PubMed  PubMed Central  Google Scholar 

Jacob F, et al. A patient-derived Glioblastoma Organoid Model and Biobank recapitulates Inter- and intra-tumoral heterogeneity. Cell. 2020;180(1):188–e20422.

Article  CAS  PubMed  Google Scholar 

Adam J, et al. Multicenter harmonization study for PD-L1 immunohistochemical testing in non-small-cell lung cancer. Ann Oncol. 2018;29(4):953–8.

Article  CAS  PubMed  Google Scholar 

Doroshow DB, et al. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat Rev Clin Oncol. 2021;18(6):345–62.

Article  CAS  PubMed  Google Scholar 

Bensch F, et al. (89)Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat Med. 2018;24(12):1852–8.

Article  CAS  PubMed  Google Scholar 

Mu W et al. Non-invasive measurement of PD-L1 status and prediction of immunotherapy response using deep learning of PET/CT images. J Immunother Cancer, 2021. 9(6).

Zhou M, et al. Preclinical and first-in-human evaluation of (18)F-labeled D-peptide antagonist for PD-L1 status imaging with PET. Eur J Nucl Med Mol Imaging. 2022;49(13):4312–24.

Article  CAS  PubMed  Google Scholar 

Huisman MC, et al. Quantification of PD-L1 expression with (18)F-BMS-986192 PET/CT in patients with Advanced-Stage Non-small Cell Lung Cancer. J Nucl Med. 2020;61(10):1455–60.

Article  PubMed  Google Scholar 

Bouleau A, et al. Optimizing Immuno-PET Imaging of Tumor PD-L1 expression: pharmacokinetic, Biodistribution, and dosimetric comparisons of (89)Zr-Labeled Anti-PD-L1 antibody formats. J Nucl Med. 2022;63(8):1259–65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou X, et al. First-in-humans evaluation of a PD-L1-Binding peptide PET Radiotracer in Non-small Cell Lung Cancer patients. J Nucl Med. 2022;63(4):536–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chatterjee S, et al. Rapid PD-L1 detection in tumors with PET using a highly specific peptide. Biochem Biophys Res Commun. 2017;483(1):258–63.

Article  CAS  PubMed  Google Scholar 

Jiang J, et al. Noninvasive evaluation of PD-L1 expression using copper 64 labeled peptide WL12 by micro-PET imaging in Chinese hamster ovary cell tumor model. Bioorg Med Chem Lett. 2021;40:127901.

Article  CAS  PubMed  Google Scholar 

Kumar D et al. Pharmacodynamic measures within tumors expose differential activity of PD(L)-1 antibody therapeutics Proc Natl Acad Sci U S A, 2021. 118(37).

Mishra A, et al. Gallium-68-labeled peptide PET quantifies Tumor exposure of PD-L1 therapeutics. Clin Cancer Res. 2023;29(3):581–91.

Article  CAS  PubMed  Google Scholar 

Liu Z, et al. Optimization, automation and validation of the large-scale radiosynthesis of Al 18 F tracers in a custom-made automatic platform for high yield. Reaction Chem Eng. 2020;5(8):1441–9.

Article  CAS  Google Scholar 

Fu Z, et al. Custom-built automated radiosynthesis platform for Al [18F] F radiochemistry and its application for clinical production. Chem Eng J. 2023;456:141080.

Article  CAS  Google Scholar 

Nie S, et al. Determining optimal clinical target volume margins in high-grade glioma based on microscopic tumor extension and magnetic resonance imaging. Radiat Oncol. 2021;16(1):97.

Article  PubMed  PubMed Central  Google Scholar 

Miller MM, Patrick Allen CMM, Bowsher MS, Boy KM, Gillis EP, Langley DR, Mull E, Poirier MA, Nishith Sanghvi, Li-Qiang Sun DJ, Tenney, Kap-Sun Yeung J, Zhu PC, Reid, Paul Michael Scola, Macrocyclic inhibitors of the pd-1/pd-l1 and cd80(b7-1)/pd-l1 protein/protein interactions, B.-M. Squibb, Editor. 2014, Bristol-Myers Squibb.

Nie S, et al. Clinicopathologic analysis of microscopic tumor extension in glioma for external beam radiotherapy planning. BMC Med. 2021;19(1):269.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Horbinski C, et al. NCCN Guidelines(R) insights: Central Nervous System Cancers, Version 2.2022. J Natl Compr Canc Netw. 2023;21(1):12–20.

Article  CAS  PubMed  Google Scholar 

Tsao MS, et al. PD-L1 immunohistochemistry comparability study in real-life clinical samples: results of Blueprint phase 2 project. J Thorac Oncol. 2018;13(9):1302–11.

Article  PubMed  PubMed Central  Google Scholar 

Hong L, et al. Programmed death-ligand 1 heterogeneity and its impact on Benefit from Immune checkpoint inhibitors in NSCLC. J Thorac Oncol. 2020;15(9):1449–59.

Article  CAS  PubMed  Google Scholar 

Mansfield AS, et al. Temporal and spatial discordance of programmed cell death-ligand 1 expression and lymphocyte tumor infiltration between paired primary lesions and brain metastases in lung cancer. Ann Oncol. 2016;27(10):1953–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rasmussen JH, et al. Intratumor heterogeneity of PD-L1 expression in head and neck squamous cell carcinoma. Br J Cancer. 2019;120(10):1003–6.

Article  PubMed  PubMed Central  Google Scholar 

Ilie M, et al. Comparative study of the PD-L1 status between surgically resected specimens and matched biopsies of NSCLC patients reveal major discordances: a potential issue for anti-PD-L1 therapeutic strategies. Ann Oncol. 2016;27(1):147–53.

Article  CAS  PubMed  Google Scholar 

Gagne A, et al. Comprehensive Assessment of PD-L1 Staining Heterogeneity in Pulmonary Adenocarcinomas using tissue microarrays: impact of the Architecture Pattern and the number of cores. Am J Surg Pathol. 2018;42(5):687–94.

Article  PubMed  Google Scholar 

Munari E, et al. PD-L1 expression comparison between primary and relapsed non-small cell lung carcinoma using whole sections and clone SP263. Oncotarget. 2018;9(54):30465–71.

Article  PubMed  PubMed Central  Google Scholar 

Gniadek TJ, et al. Heterogeneous expression of PD-L1 in pulmonary squamous cell carcinoma and adenocarcinoma: implications for assessment by small biopsy. Mod Pathol. 2017;30(4):530–8.

Article  CAS  PubMed  Google Scholar 

De Silva RA, et al. Peptide-based (68)Ga-PET Radiotracer for Imaging PD-L1 expression in Cancer. Mol Pharm. 2018;15(9):3946–52.

Article  PubMed  PubMed Central  Google Scholar 

Lesniak WG, et al. Development of [(18)F]FPy-WL12 as a PD-L1 specific PET imaging peptide. Mol Imaging. 2019;18:1536012119852189.

Article  PubMed  PubMed Central  Google Scholar 

Kumar D, et al. Peptide-based PET quantifies target engagement of PD-L1 therapeutics. J Clin Invest. 2019;129(2):616–30.

Article  PubMed  PubMed Central  Google Scholar 

Greschner AA, et al. PEGylation of a peptide-based amphiphilic delivery Agent and Influence on protein delivery to cells. Biomacromolecules. 2023;24(11):4890–900.

Article  CAS  PubMed  Google Scholar 

Wang L, et al. Therapeutic peptides: current applications and future directions. Signal Transduct Target Ther. 2022;7(1):48.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif