Kemp DT (1976) Active resonance systems in audition. 13th International Congress of Audiology, Bari, Italy, Abstracts 64–65
Kemp DT (1978) Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am 64:1386–1391. https://doi.org/10.1121/1.382104
Article CAS PubMed Google Scholar
Bergevin C, Manley GA, Köppl C (2015) Salient features of otoacoustic emissions are common across tetrapod groups and suggest shared properties of generation mechanisms. Proc Nat Acad Sci (PNAS) 112(11):3362–67. https://doi.org/10.1073/pnas.1418569112
Article CAS PubMed Google Scholar
Gold T (1948) Hearing II. The physical basis of the action of the cochlea. Proc Royal Soc B 135:492–98
Bell A (2005) The underwater piano: a resonance theory of cochlear mechanics. PhD thesis, Australian National University, Canberra. https://dx.doi.org/10.25911/5d7a2c6dcff7f
Gold T (1988) Historical background to the proposal, 40 years ago, of an active model for cochlear frequency analysis. In: Wilson JP, Kemp DT (eds) Cochlear mechanisms, structure, function and models. Plenum Press, New York, pp 299–305
Goldstein JL (1967) Auditory nonlinearity. J Acoust Soc Am 41:676–89
Article CAS PubMed Google Scholar
Nuttall AL, Grosh K, Zheng J, De Boer E, Zou Y, Ren T (2004) Spontaneous basilar membrane oscillation and otoacoustic emission at 15 kHz in a guinea pig. J Assoc Res Otolaryngol 5:337–48
Article CAS PubMed PubMed Central Google Scholar
Wit HP, Ritsma RJ (1979) Stimulated emissions from the human ear. J Acoust Soc Am 66:911–913. https://doi.org/10.1121/1.383202
Wit HP, Ritsma RJ (1980) Evoked responses from the human ear: some experimental results. Hear Res 2:253–261. https://doi.org/10.1016/0378-5955(80)90061-1
Article CAS PubMed Google Scholar
Rutten WLC (1980) Evoked acoustic emissions from within normal and abnormal human ears: comparison with audiometric and electrocochleographic findings. Hear Res 2:263–271. https://doi.org/10.1016/0378-5955(80)90062-3
Article CAS PubMed Google Scholar
Schloth E (1980) Amplitudengang der im äuszeren Gehörgang gemessenen akustischen Antworten auf Schallreize. Acustica 44:239–41
Wilson JP (1980) Evidence for cochlear origin for acoustic re-emissions, threshold fine-structure and tonal tinnitus. Hear Res 2:233–252. https://doi.org/10.1016/0378-5955(80)90060-X
Article CAS PubMed Google Scholar
Probst R, Lonsbury-Martin BL, Martin GK (1991) A review of otoacoustic emissions. J Acoust Soc Am 89:2027–2067. https://doi.org/10.1121/1.400897
Article CAS PubMed Google Scholar
Kemp DT (1979) Evidence of mechanical nonlinearity and frequency selective wave amplification in the cochlea. Arch Otorhinolaryngol 224:37–45
Article CAS PubMed Google Scholar
Wilson JP (1980) Recording of the Kemp echo and tinnitus from the ear canal without averaging. J Physiol 298:8-9P
Zurek PM (1980) Objective tonal tinnitus. J Acoust Soc Am 68(Suppl 1):S44
Zurek PM (1981) Spontaneous narrowband acoustic signals emitted by human ears. J Acoust Soc Am 69:514–23
Article CAS PubMed Google Scholar
Wit HP, Langevoort JC, Ritsma RJ (1981) Frequency spectra of cochlear acoustic emissions (Kemp-echoes). J Acoust Soc Am 70:437–445
Johannesma PIM (1980) Narrow band filters and active resonators. Comments on papers by DT Kemp & RJ Chum, and HP Wit & RJ Ritsma. In: van de Brink G, Bilsen FA (eds) Psychophysical, physiological, and behavioural studies in hearing. Delft University Press, Delft, pp 62–63
Van der Pol B (1920) A theory of the amplitude of free and forced triode vibrations. Radio Review (later Wireless World) 1:701–710
Long GR, Tubis A (1988) Modification of spontaneous and evoked otoacoustic emissions and associated psychoacoustic microstructure by aspirin consumption. J Acoust Soc Am 84:1343–1353. https://doi.org/10.1121/1.396633
Article CAS PubMed Google Scholar
Long GL, Tubis A (1988) Investigations into the nature of the association between threshold microstructure and otoacoustic emissions. Hear Res 36:125–138. https://doi.org/10.1016/0378-5955(88)90055-x
Article CAS PubMed Google Scholar
Bialek W, Wit HP (1984) Quantum limits to oscillator stability: theory and experiments on acoustic emissions from the human ear. Phys Lett 104A(3):173–178
Van Dijk P, Wit HP, Segenhout JM (1989) Spontaneous otoacoustic emissions in the European edible frog (Rana Esculenta): spectral details and temperature dependence. Hear Res 42:273–282
Zwicker E, Schloth E (1984) Interrelation of different oto-acoustic emissions. J Acoust Soc Am 75:1148–1154. https://doi.org/10.1121/1.390763
Article CAS PubMed Google Scholar
Long GR, Tubis A, Jones KL (1991) Modeling synchronization and suppression of spontaneous otoacoustic emissions using Van der Pol oscillators: effects of aspirin administration. J Acoust Soc Am 89:1201–1212
Article CAS PubMed Google Scholar
van Dijk P, Wit HP (1990) Synchronization of spontaneous otoacoustic emissions to a \(2f_1-f_2\) distortion product. J Acoust Soc Am 88:850–856
van Dijk P, Wit HP (1998) Synchronization of cubic distortion spontaneous otoacoustic emissions. J Acoust Soc Am 104:591–594
Talmadge CL, Tubis A, Wit HP, Long GR (1991) Are spontaneous otoacoustic emissions generated by self-sustained cochlear oscillators? J Acoust Soc Am 89:2391–2399. https://doi.org/10.1121/1.400958
Article CAS PubMed Google Scholar
Duifhuis H, Hoogstraten HW, van Netten SM, Diependaal RJ, Bialek W (1986) Modelling the cochlear partition with coupled van der Pol oscillators. In: Allen JB, Hall JL, Hubbard A, Neely ST, Tubis A (eds) Peripheral auditory mechanisms. Lecture notes in biomathematics vol 64, Springer-Verlag Berlin Heidelberg, pp 290–298. https://doi.org/10.1007/978-3-642-50038-1
van den Raadt MPGM, Duifhuis H (1990) A generalized Van der Pol-oscillator model. In: Dallos P, Geisler CD, Matthews JW, Ruggero MA, Steele CR (eds) The mechanics and biophysics of hearing. Lecture notes in biomathematics vol 87, Springer-Verlag Berlin Heidelberg, pp 227–233. https://doi.org/10.1007/978-1-4757-4341-8
van Hengel PWJ, Duifhuis H, van den Raadt MPMG (1996) Spatial periodicity in the cochlea: the result of interaction of spontaneous emissions? J Acoust Soc Am 99:3566–3571. https://doi.org/10.1121/1.414955
Talmadge CL, Long GR, Murphy WJ, Tubis A (1993) New offline method for detecting spontaneous otoacoustic emissions in human subjects. Hear Res 71:170–182
Article CAS PubMed Google Scholar
Elliott SJ, Ku EM, Lineton B (2007) A state space model for cochlear mechanics. J Acoust Soc Am 122:2759–2771
Ku EM, Elliott SJ, Lineton B (2009) Limit cycle oscillations in a nonlinear state space model of the human cochlea. J Acoust Soc Am 126:739–750
Elliott S, Ni G (2018) An elemental approach to modelling the mechanics of the cochlea. Hear Res 300:14–24
Vignali D (2017) Modelling nonlinear interactions within the cochlea. Doctoral Thesis, University of Southampton. http://eprints.soton.ac.uk/id/eprint/412704
Wit HP (2021) How an array of discrete resonators, coupled by fluid, can reproduce the dynamics of click-evoked otoacoustic emissions. J Hear Sci 11(1):54–62. https://doi.org/10.17430/JHS.2021.11.1.6
van Dijk P, Wit HP (1990) Amplitude and frequency fluctuations of spontaneous otoacoustic emissions. J Acoust Soc Am 88:1779–1793. https://doi.org/10.1121/1.400199
van Dijk P, Wit HP, Tubis A, Talmadge CR, Long GR (1994) Correlation between amplitude and frequency fluctuations of spontaneous otoacoustic emissions. J Acoust Soc Am 96:163–169. https://doi.org/10.1121/1.411438
Bell A (1992) Circadian and menstrual rhythms in frequency variations of spontaneous otoacoustic emissions from human ears. Hear Res 58:91–100
Article CAS PubMed Google Scholar
Long GR, Talmadge CL (1997) Spontaneous otoacoustic emission frequency is modulated by heartbeat. J Acoust Soc Am 102:2831–2848. https://doi.org/10.1121/1.420339
Article CAS PubMed Google Scholar
Murphy WJ, Talmadge CL, Tubis A, Long GR (1995) Relaxation dynamics of spontaneous otoacoustic emissions perturbed by external tones. I. Response to to pulsed single-tone suppressors. J Acoust Soc Am 97:3702–3710. https://doi.org/10.1121/1.412387
Article CAS PubMed Google Scholar
Murphy WJ, Tubis A, Talmadge CL, Long GR (1995) Relaxation dynamics of spontaneous otoacoustic emissions perturbed by external tones. II. Suppression of interacting emissions. J Acoust Soc Am 97:3711–3720. https://doi.org/10.1121/1.412388
Article CAS PubMed Google Scholar
Murphy WJ, Tubis A, Talmadge CL, Long GR, Krieg EF (1996) Relaxation dynamics of spontaneous otoacoustic emissions perturbed by external tones. III. Response to a single tone at multiple suppression levels. J Acoust Soc Am 100:3979–3982. https://doi.org/10.1121/1.417217
留言 (0)