Drug resistance mechanisms and treatment strategies mediated by Ubiquitin-Specific Proteases (USPs) in cancers: new directions and therapeutic options

International Agency for Research on Cancer. Latest global cancer data: Cancer burden rises to 19.3 million new cases and 10.0 million cancer deaths in 2020. World Health Organization. 2020.

Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48.

Article  PubMed  Google Scholar 

Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW. Cancer genome landscapes. Science. 2013;339(6127):1546–58.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Williams PA, Zaidi SK, Sengupta R. AACR cancer progress report 2023: advancing the frontiers of cancer science and medicine. Clin Cancer Res. 2023;29(19):3850–1.

Article  CAS  PubMed  Google Scholar 

Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018;15(2):81–94.

Article  CAS  PubMed  Google Scholar 

Marine JC, Dawson SJ, Dawson MA. Non-genetic mechanisms of therapeutic resistance in cancer. Nat Rev Cancer. 2020;20(12):743–56.

Article  CAS  PubMed  Google Scholar 

Musyuni P, Bai J, Sheikh A, Vasanthan KS, Jain GK, Abourehab MAS, et al. Precision medicine: ray of hope in overcoming cancer multidrug resistance. Drug Resist Updat. 2022;65:100889.

Article  CAS  PubMed  Google Scholar 

Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature. 2019;575(7782):299–309.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nussinov R, Tsai CJ, Jang H. Anticancer drug resistance: an update and perspective. Drug Resist Updat. 2021;59:100796.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang N, Ma T, Yu B. Targeting epigenetic regulators to overcome drug resistance in cancers. Signal Transduct Target Ther. 2023;8(1):69.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang X, Dixit VM. Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Res. 2016;26(4):484–98.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dai C, Gu W. P53 post-translational modification: deregulated in tumorigenesis. Trends Mol Med. 2010;16(11):528–36.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mansour MA. Ubiquitination: friend and foe in cancer. Int J Biochem Cell Biol. 2018;101:80–93.

Article  CAS  PubMed  Google Scholar 

Park J, Cho J, Song EJ. Ubiquitin–proteasome system (UPS) as a target for anticancer treatment. Arch Pharm Res. 2020;43(11):1144–61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang R, Langdon WY, Zhang J. Regulation of immune responses by E3 ubiquitin ligase Cbl-b. Cell Immunol. 2019;340:103878.

Article  CAS  PubMed  Google Scholar 

Lander GC, Estrin E, Matyskiela ME, Bashore C, Nogales E, Martin A. Complete subunit architecture of the proteasome regulatory particle. Nature. 2012;482(7384):186–91.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pohl C, Dikic I. Cellular quality control by the ubiquitin-proteasome system and autophagy. Science. 2019;366(6467):818–22.

Article  CAS  PubMed  Google Scholar 

Komander D, Clague MJ, Urbe S. Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol. 2009;10(8):550–63.

Article  CAS  PubMed  Google Scholar 

Snyder NA, Silva GM. Deubiquitinating Enzymes (DUBs): Regulation, Homeostasis, and Oxidative Stress Response. J Biol Chem. 2021;297(3):101077.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mennerich D, Kubaichuk K, Kietzmann T. DUBs, hypoxia, and cancer. Trends Cancer. 2019;5(10):632–53.

Article  CAS  PubMed  Google Scholar 

Harrigan JA, Jacq X, Martin NM, Jackson SP. Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat Rev Drug Discov. 2018;17(1):57–78.

Article  CAS  PubMed  Google Scholar 

Tanguturi P, Kim KS, Ramakrishna S. The role of deubiquitinating enzymes in cancer drug resistance. Cancer Chemother Pharmacol. 2020;85(4):627–39.

Article  CAS  PubMed  Google Scholar 

Qiu GZ, Sun W, Jin MZ, Lin J, Lu PG, Jin WL. The bad seed gardener: deubiquitinases in the cancer stem-cell signaling network and therapeutic resistance. Pharmacol Ther. 2017;172:127–38.

Article  CAS  PubMed  Google Scholar 

Ge F, Li Y, Yuan T, Wu Y, He Q, Yang BD, et al. Deubiquitinating enzymes: promising targets for drug resistance. Drug Discov Today. 2022;27(9):2603–13.

Article  CAS  PubMed  Google Scholar 

Rottenberg S, Disler C, Perego P. The rediscovery of platinum-based cancer therapy. Nat Rev Cancer. 2021;21(1):37–50.

Article  CAS  PubMed  Google Scholar 

Wangpaichitr M, Theodoropoulos G, Nguyen DJM, Wu C, Spector SA, Feun LG, et al. Cisplatin resistance and redox-metabolic vulnerability: a second alteration. Int J Mol Sci. 2021;22(14):7379.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Scully A, Panday R, Elango NA. Willis, DNA double-strand break repair pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol. 2019;20:698–714.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Adam-Zahir S, Plowman PN, Bourton EC, Sharif F, Parris CN. Increased gamma-H2AX and Rad51 DNA repair biomarker expression in human cell lines resistant to the chemotherapeutic agents nitrogen mustard and cisplatin. Chemotherapy. 2014;60(5–6):310–20.

Article  CAS  PubMed  Google Scholar 

Zhou F, Lu J, Jin W, Li Z, Xu D, Gu L. The role of USP51 in attenuating chemosensitivity of lung cancer cells to cisplatin by regulating DNA damage response. Biotechnol Appl Biochem. 2023;70(2):634–44.

Article  CAS  PubMed  Google Scholar 

Wang A, Ning Z, Lu C, Gao W, Liang J, Yan Q, et al. USP22 induces cisplatin resistance in lung adenocarcinoma by regulating γH2AX-Mediated DNA damage repair and Ku70/Bax-mediated apoptosis. Front Pharmacol. 2017;17(8):274.

Article  Google Scholar 

Nardi IK, Stark JM, Larsen A, Salgia R, Raz DJ. USP22 interacts with PALB2 and promotes chemotherapy resistance via homologous recombination of DNA double-strand breaks. Mol Cancer Res. 2020;18(3):424–35.

Article  CAS  PubMed  Google Scholar 

Su D, Ma S, Shan L, Wang Y, Wang Y, Cao C, et al. Ubiquitin-specific protease 7 sustains DNA damage response and promotes cervical carcinogenesis. J Clin Invest. 2018;128(10):4280–96.

Article  PubMed  PubMed Central  Google Scholar 

Alonso-de Vega I, Martín Y, Smits VA. USP7 controls Chk1 protein stability by direct deubiquitination. Cell Cycle. 2014;13(24):3921–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zlatanou A, Sabbioneda S, Miller ES, Greenwalt A, Aggathanggelou A, Maurice MM, et al. USP7 is essential for maintaining Rad18 stability and DNA damage tolerance. Oncogene. 2016;35(8):965–76.

Article  CAS  PubMed  Google Scholar 

Zhu Q, Sharma N, He J, Wani G, Wani AA. USP7 deubiquitinase promotes ubiquitin-dependent DNA damage signaling by stabilizing RNF168. Cell Cycle. 2015;14(9):1413–25.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Das S, Chandrasekaran AP, Jo KS, Ko NR, Oh SJ, Kim KS, et al. HAUSP stabilizes Cdc25A and protects cervical cancer cells from DNA damage response. Biochim Biophys Acta Mol Cell Res. 2020;1867(12):118835.

Article  CAS  PubMed  Google Scholar 

Liu J, Zhou T, Dong X, Guo Q, Zheng L, Wang X, et al. De-ubiquitination of SAMHD1 by USP7 promotes DNA damage repair to overcome oncogenic stress and affect chemotherapy sensitivity. Oncogene. 2023;42(22):1843–56.

Article 

留言 (0)

沒有登入
gif