Crucial Gating Residues Govern the Enhancement of Peroxygenase Activity in an Engineered Cytochrome P450 O-Demethylase

P450-catalyzed O-demethylation reactions have recently attracted particular attention because of their potential applications in lignin bioconversion. We recently enabled the peroxygenase activity of CYP199A4, a NADH-dependent cytochrome P450 monooxygenase from Rhodopseudomonas palustris, by engineering a hydrogen peroxide (H2O2) tunnel. In this report, we reveal by crystallography and molecule dynamics simulations that key residues located at one of the water tunnels in CYP199A4 play a crucial gating role, which enhances the peroxygenase activity by regulating the inflow of H2O2. These results provide a more complete understanding of the mechanism by which monooxygenase is converted into peroxygenase activity through the H2O2 tunnel engineering (HTE) strategy. Furthermore, a library of engineered CYP199A4 peroxygenases was constructed to explore their application potentials for O-demethylation of various methoxy-substituted benzoic acid derivatives. The engineered CYP199A4 peroxygenases showed good functional group tolerance and preferential O-demethylation at the meta- or para-position, indicating potential O-demethylation of H- and G-type lignin monomers. This work reveals the feasibility of the HTE strategy in creating P450 peroxygenase from a mechanistic perspective, laying the foundation for developing an effective P450 O-demethylase applicable in lignin bioconversion.

This article is Open Access

Please wait while we load your content... Something went wrong. Try again?

留言 (0)

沒有登入
gif