Leveraging radiomics and machine learning to differentiate radiation necrosis from recurrence in patients with brain metastases

Ocaña-Tienda B, Pérez-Beteta J, Villanueva-García JD et al (2023) A comprehensive dataset of annotated brain metastasis MR images with clinical and radiomic data. Sci Data 10:208. https://doi.org/10.1038/s41597-023-02123-0

Article  PubMed  PubMed Central  Google Scholar 

Wang XY, Rosen MN, Chehade R et al (2022) Analysis of Rates of Brain Metastases and Association With Breast Cancer Subtypes in Ontario. Canada JAMA Netw Open 5:e2225424. https://doi.org/10.1001/jamanetworkopen.2022.25424

Article  PubMed  Google Scholar 

Cagney DN, Martin AM, Catalano PJ et al (2017) Incidence and prognosis of patients with brain metastases at diagnosis of systemic malignancy: a population-based study. Neuro Oncol 19:1511–1521. https://doi.org/10.1093/neuonc/nox077

Article  PubMed  PubMed Central  Google Scholar 

Gondi V, Bauman G, Bradfield L et al (2022) Radiation Therapy for Brain Metastases: An ASTRO Clinical Practice Guideline. Pract Radiat Oncol 12:265–282. https://doi.org/10.1016/j.prro.2022.02.003

Article  PubMed  Google Scholar 

Vogelbaum MA, Brown PD, Messersmith H et al (2022) Treatment for Brain Metastases: ASCO-SNO-ASTRO Guideline. JCO 40:492–516. https://doi.org/10.1200/JCO.21.02314

Article  CAS  Google Scholar 

Miller JA, Bennett EE, Xiao R et al (2016) Association Between Radiation Necrosis and Tumor Biology After Stereotactic Radiosurgery for Brain Metastasis. Int J Rad Oncol Biol Phy 96:1060–1069. https://doi.org/10.1016/j.ijrobp.2016.08.039

Article  Google Scholar 

Sneed PK, Mendez J, Vemer-van Den Hoek JGM, et al (2015) Adverse radiation effect after stereotactic radiosurgery for brain metastases: incidence, time course, and risk factors. JNS 1s23:373–386. https://doi.org/10.3171/2014.10.JNS141610

Kohutek ZA, Yamada Y, Chan TA et al (2015) Long-term risk of radionecrosis and imaging changes after stereotactic radiosurgery for brain metastases. J Neurooncol 125:149–156. https://doi.org/10.1007/s11060-015-1881-3

Article  PubMed  PubMed Central  Google Scholar 

Siddiqui ZA, Squires BS, Johnson MD et al (2020) Predictors of radiation necrosis in long-term survivors after Gamma Knife stereotactic radiosurgery for brain metastases. Neuro-Oncology Practice 7:400–408. https://doi.org/10.1093/nop/npz067

Article  PubMed  Google Scholar 

Lawrence YR, Li XA, el Naqa I et al (2010) Radiation dose-volume effects in the brain. Int J Radiat Oncol Biol Phys 76:S20-27. https://doi.org/10.1016/j.ijrobp.2009.02.091

Article  PubMed  PubMed Central  Google Scholar 

Belka C, Budach W, Kortmann RD, Bamberg M (2001) Radiation induced CNS toxicity–molecular and cellular mechanisms. Br J Cancer 85:1233–1239. https://doi.org/10.1054/bjoc.2001.2100

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lohmann P, Franceschi E, Vollmuth P et al (2022) Radiomics in neuro-oncological clinical trials. Lancet Digit Health 4:e841–e849. https://doi.org/10.1016/S2589-7500(22)00144-3

Article  CAS  PubMed  Google Scholar 

Zhou M, Scott J, Chaudhury B et al (2018) Radiomics in Brain Tumor: Image Assessment, Quantitative Feature Descriptors, and Machine-Learning Approaches. AJNR Am J Neuroradiol 39:208–216. https://doi.org/10.3174/ajnr.A5391

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rizzo S, Botta F, Raimondi S et al (2018) Radiomics: the facts and the challenges of image analysis. Eur Radiol Exp 2:36. https://doi.org/10.1186/s41747-018-0068-z

Article  PubMed  PubMed Central  Google Scholar 

Kickingereder P, Isensee F, Tursunova I et al (2019) Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study. Lancet Oncol 20:728–740. https://doi.org/10.1016/S1470-2045(19)30098-1

Article  PubMed  Google Scholar 

Peng L, Parekh V, Huang P et al (2018) Distinguishing True Progression From Radionecrosis After Stereotactic Radiation Therapy for Brain Metastases With Machine Learning and Radiomics. Int J Rad Oncol Biol Phys 102:1236–1243. https://doi.org/10.1016/j.ijrobp.2018.05.041

Article  Google Scholar 

Chen X, Parekh VS, Peng L, et al (2021) Multiparametric radiomic tissue signature and machine learning for distinguishing radiation necrosis from tumor progression after stereotactic radiosurgery. Neuro-Oncology Advances 3:vdab150. https://doi.org/10.1093/noajnl/vdab150

Salari E, Elsamaloty H, Ray A et al (2023) Differentiating Radiation Necrosis and Metastatic Progression in Brain Tumors Using Radiomics and Machine Learning. Am J Clin Oncol 46:486–495. https://doi.org/10.1097/COC.0000000000001036

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choi Y, Jang J, Kim B, Ahn K-J (2023) Pretreatment MR-based radiomics in patients with glioblastoma: A systematic review and meta-analysis of prognostic endpoints. Eur J Radiol 168:111130. https://doi.org/10.1016/j.ejrad.2023.111130

Article  PubMed  Google Scholar 

Hu X, Wong KK, Young GS et al (2011) Support vector machine multiparametric MRI identification of pseudoprogression from tumor recurrence in patients with resected glioblastoma. J Magn Reson Imaging 33:296–305. https://doi.org/10.1002/jmri.22432

Article  PubMed  PubMed Central  Google Scholar 

Beig N, Bera K, Prasanna P et al (2020) Radiogenomic-Based Survival Risk Stratification of Tumor Habitat on Gd-T1w MRI Is Associated with Biological Processes in Glioblastoma. Clin Cancer Res 26:1866–1876. https://doi.org/10.1158/1078-0432.CCR-19-2556

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beig N, Singh S, Bera K et al (2021) Sexually dimorphic radiogenomic models identify distinct imaging and biological pathways that are prognostic of overall survival in glioblastoma. Neuro Oncol 23:251–263. https://doi.org/10.1093/neuonc/noaa231

Article  PubMed  Google Scholar 

Okimoto N, Yasaka K, Fujita N et al (2024) Deep learning reconstruction for improving the visualization of acute brain infarct on computed tomography. Neuroradiology 66:63–71. https://doi.org/10.1007/s00234-023-03251-5

Article  PubMed  Google Scholar 

Nowakowski A, Lahijanian Z, Panet-Raymond V, et al (2022) Radiomics as an emerging tool in the management of brain metastases. Neuro-Oncology Advances 4:vdac141. https://doi.org/10.1093/noajnl/vdac141

Hettal L, Stefani A, Salleron J et al (2020) Radiomics Method for the Differential Diagnosis of Radionecrosis Versus Progression after Fractionated Stereotactic Body Radiotherapy for Brain Oligometastasis. Radiat Res 193:471. https://doi.org/10.1667/RR15517.1

Article  CAS  PubMed  Google Scholar 

Larroza A, Moratal D, Paredes-Sánchez A et al (2015) Support vector machine classification of brain metastasis and radiation necrosis based on texture analysis in MRI. Magn Reson Imaging 42:1362–1368. https://doi.org/10.1002/jmri.24913

Article  Google Scholar 

Leeman JE, Clump DA, Flickinger JC et al (2013) Extent of perilesional edema differentiates radionecrosis from tumor recurrence following stereotactic radiosurgery for brain metastases. Neuro Oncol 15:1732–1738. https://doi.org/10.1093/neuonc/not130

Article  PubMed  PubMed Central  Google Scholar 

Musunuru HB, Witt JS, Yadav P et al (2019) Impact of adjuvant fractionated stereotactic radiotherapy dose on local control of brain metastases. J Neurooncol 145:385–390. https://doi.org/10.1007/s11060-019-03308-7

Article  PubMed  Google Scholar 

Enright TL, Witt JS, Burr AR et al (2021) Combined Immunotherapy and Stereotactic Radiotherapy Improves Neurologic Outcomes in Patients with Non-small-cell Lung Cancer Brain Metastases. Clin Lung Cancer 22:110–119. https://doi.org/10.1016/j.cllc.2020.10.014

Article  CAS  PubMed  Google Scholar 

Anderson BM, Wahid KA, Brock KK (2021) Simple Python Module for Conversions Between DICOM Images and Radiation Therapy Structures, Masks, and Prediction Arrays. Pract Radiat Oncol 11:226–229. https://doi.org/10.1016/j.prro.2021.02.003

Article  PubMed  PubMed Central  Google Scholar 

Fonov V, Evans AC, Botteron K et al (2011) Unbiased average age-appropriate atlases for pediatric studies. Neuroimage 54:313–327. https://doi.org/10.1016/j.neuroimage.2010.07.033

Article  PubMed  Google Scholar 

Tustison NJ, Avants BB, Cook PA et al (2010) N4ITK: Improved N3 Bias Correction. IEEE Trans Med Imaging 29:1310–1320. https://doi.org/10.1109/TMI.2010.2046908

Article  PubMed  PubMed Central  Google Scholar 

Nyul LG, Udupa JK, Zhang X (2000) New variants of a method of MRI scale standardization. IEEE Trans Med Imaging 19:143–150. https://doi.org/10.1109/42.836373

Article  CAS  PubMed  Google Scholar 

ANTsX. Advanced Normalization Tools (ANTs). GitHub. https://github.com/ANTsX/ANTs. Accessed 1 Nov 2023

van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res 77:e104–e107. https://doi.org/10.1158/0008-5472.CAN-17-0339

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng H, Long F, Ding C (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Machine Intell 27:1226–1238. https://doi.org/10.1109/TPAMI.2005.159

Article  Google Scholar 

Demircioğlu A (2021) Measuring the bias of incorrect application of feature selection when using cross-validation in radiomics. Insights Imaging 12:172. https://doi.org/10.1186/s13244-021-01115-1

Article  PubMed  PubMed Central  Google Scholar 

Zhang Z, Yang J, Ho A et al (2018) A predictive model for distinguishing radiation necrosis from tumour progression after gamma knife radiosurgery based on radiomic features from MR images. Eur Radiol 28:2255–2263. https://doi.org/10.1007/s00330-017-5154-8

留言 (0)

沒有登入
gif