In vitro and in vivo fermentation models to study the function of dietary fiber in pig nutrition

Agyekum AK, Nyachoti CM (2017) Nutritional and metabolic consequences of feeding high fiber diets to swine: a review. Engineering 3(5):716–725. https://doi.org/10.1016/j.Eng.2017.03.010

Article  CAS  Google Scholar 

Akhlaghi M (2022) The role of dietary fibers in regulating appetite, an overview of mechanisms and weight consequences. Crit Rev Food Sci Nutr 4:1–12. https://doi.org/10.1080/10408398.2022.2130160

Article  CAS  Google Scholar 

Ashworth CJ, Toma LM, Hunter MG (2009) Nutritional effects on oocyte and embryo development in mammals: implications for reproductive efficiency and environmental sustainability. Philos Trans R Soc Lond B Biol Sci 364(1534):3351–3361. https://doi.org/10.1098/rstb.2009.0184

Article  PubMed  PubMed Central  Google Scholar 

Bach Knudsen KE, Lærke HN, Hedemann MS, Nielsen TS, Ingerslev AK, Gundelund Nielsen DS, Theil PK, Purup S, Hald S, Schioldan AG, Marco ML, Gregersen S, Hermansen K (2018) Impact of diet-modulated butyrate production on intestinal barrier function and inflammation. Nutrients 10(10). https://doi.org/10.3390/nu10101499

Bai X, Liu S, Yuan L, Xie Y, Li T, Wang L, Wang X, Zhang T, Qin S, Song G (2016) Hydrogen-rich saline mediates neuroprotection through the regulation of endoplasmic reticulum stress and autophagy under hypoxia-ischemia neonatal brain injury in mice. Brain Res 1646:410–417. https://doi.org/10.1016/j.brainres.2016.06.020

Article  CAS  PubMed  Google Scholar 

Bai Y, Zhao JB, Tao SY, Zhou XJ, Pi Y, Gerrits WJJ, Johnston LJ, Zhang SY, Yang HJ, Liu L, Zhang S, Wang JJ (2020) Effect of dietary fiber fermentation on short-chain fatty acid production and microbial composition in vitro. J Sci Food Agric 100(11):4282–4291. https://doi.org/10.1002/jsfa.10470

Article  CAS  PubMed  Google Scholar 

Bai Y, Zhou XJ, Li N, Zhao JBA, Ye H, Zhang SY, Yang HJ, Pi Y, Tao SY, Han DD, Zhang S, Wang JJ (2021) In vitro fermentation characteristics and fiber-degrading enzyme kinetics of cellulose, arabinoxylan, β-glucan and glucomannan by pig fecal microbiota. Microorganisms 9(5):1071. https://doi.org/10.3390/microorganisms9051071

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beaumont M, Paes C, Mussard E, Knudsen C, Cauquil L, Aymard P, Barilly C, Gabinaud B, Zemb O, Fourre S, Gautier R, Lencina C, Eutamene H, Theodorou V, Canlet C, Combes S (2020) Gut microbiota derived metabolites contribute to intestinal barrier maturation at the suckling-to-weaning transition. Gut Microbes 11(5):1268–1286. https://doi.org/10.1080/19490976.2020.1747335

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blander JM, Longman RS, Iliev ID, Sonnenberg GF, Artis D (2017) Regulation of inflammation by microbiota interactions with the host. Nat Immunol 18(8):851–860. https://doi.org/10.1038/ni.3780

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bohn T, Carriere F, Day L, Deglaire A, Egger L, Freitas D, Golding M, Le Feunteun S, Macierzanka A, Menard O, Miralles B, Moscovici A, Portmann R, Recio I, Rémond D, Santé-Lhoutelier V, Wooster TJ, Lesmes U, Mackie AR, Dupont D (2018) Correlation between in vitro and in vivo data on food digestion. What can we predict with static in vitro digestion models? Crit Rev Food Sci Nutr 58(13):2239–2261. https://doi.org/10.1080/10408398.2017.1315362

Article  CAS  PubMed  Google Scholar 

Burger-van Paassen N, Vincent A, Puiman PJ, van der Sluis M, Bouma J, Boehm G, van Goudoever JB, van Seuningen I, Renes IB (2009) The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: implications for epithelial protection. Biochem J 420(2):211–219. https://doi.org/10.1042/bj20082222

Article  CAS  PubMed  Google Scholar 

Byndloss MX, Olsan EE, Rivera-Chavez F, Tiffany CR, Cevallos SA, Lokken KL, Torres TP, Byndloss AJ, Faber F, Gao YD, Litvak Y, Lopez CA, Xu GG, Napoli E, Giulivi C, Tsolis RM, Revzin A, Lebrilla CB, Baumler AJ (2017) Microbiota-activated PPAR-gamma signaling inhibits dysbiotic Enterobacteriaceae expansion. Science 357(6351):570. https://doi.org/10.1126/science.aam9949

Article  CAS  PubMed  PubMed Central  Google Scholar 

Byrne CS, Chambers ES, Morrison DJ, Frost G (2015) The role of short chain fatty acids in appetite regulation and energy homeostasis. Int J Obesity 39(9):1331–1338. https://doi.org/10.1038/ijo.2015.84

Article  CAS  Google Scholar 

Camilleri M, Madsen K, Spiller R, Van Meerveld BG, Verne GN (2012) Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol Motil 24(6):503–512. https://doi.org/10.1111/j.1365-2982.2012.01921.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Campbell A, Gdanetz K, Schmidt AW, Schmidt TM (2023) H2 generated by fermentation in the human gut microbiome influences metabolism and competitive fitness of gut butyrate producers. Microbiome 11(1):133. https://doi.org/10.1186/s40168-023-01565-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Canibe N, Hojberg O, Kongsted H, Vodolazska D, Lauridsen C, Nielsen TS, Schonherz AA (2022) Review on preventive measures to reduce post-weaning diarrhoea in piglets. Animals (Basel) 12(19):2585. https://doi.org/10.3390/ani12192585

Article  PubMed  Google Scholar 

Champ M, Langkilde AM, Brouns F, Kettlitz B, Collet YL (2003) Advances in dietary fibre characterisation. 1. Definition of dietary fibre, physiological relevance, health benefits and analytical aspects. Nutr Res Rev 16(1):71–82. https://doi.org/10.1079/nrr200254

Article  CAS  PubMed  Google Scholar 

Chatterjee S, Park S, Low K, Kong Y, Pimentel M (2007) The degree of breath methane production in IBS correlates with the severity of constipation. Am J Gastroenterol 102(4):837–841. https://doi.org/10.1111/j.1572-0241.2007.01072.x

Article  CAS  PubMed  Google Scholar 

Chaudhary PP, Conway PL, Schlundt J (2018) Methanogens in humans: potentially beneficial or harmful for health. Appl Microbiol Biotechnol 102(7):3095–3104. https://doi.org/10.1007/s00253-018-8871-2

Article  CAS  PubMed  Google Scholar 

Chen H, Mao XB, He J, Yu B, Huang ZQ, Yu J, Zheng P, Chen DW (2013) Dietary fibre affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets. Br J Nutr 110(10):1837–1848. https://doi.org/10.1017/s0007114513001293

Article  CAS  PubMed  Google Scholar 

Chen H, Zhao C, Li J, Hussain S, Yan S, Wang Q (2018) Effects of extrusion on structural and physicochemical properties of soluble dietary fiber from nodes of lotus root. LWT:204–211. https://doi.org/10.1016/j.lwt.2018.03.004

Chen J, Tian M, Guan W, Wen T, Yang F, Chen F, Zhang S, Song J, Ren C, Zhang Y (2019a) Increasing selenium supplementation to a moderately-reduced energy and protein diet improves antioxidant status and meat quality without affecting growth performance in finishing pigs. J Trace Elem Med Biol 56:38–45. https://doi.org/10.1016/j.jtemb.2019.07.004

Article  CAS  PubMed  Google Scholar 

Chen J, Zhang F, Guan W, Song H, Tian M, Cheng L, Shi K, Song J, Chen F, Zhang S (2019b) Increasing selenium supply for heat-stressed or actively cooled sows improves piglet preweaning survival, colostrum and milk composition, as well as maternal selenium, antioxidant status and immunoglobulin transfer. J Trace Elem Med Biol 52:89–99. https://doi.org/10.1016/j.jtemb.2018.11.010

Article  CAS  PubMed  Google Scholar 

Chen J, Zhang Y, You J, Song H, Zhang Y, Lv Y, Qiao H, Tian M, Chen F, Zhang S (2020a) The Effects of dietary supplementation of saccharomyces cerevisiae fermentation product during late pregnancy and lactation on sow productivity, colostrum and milk composition, and antioxidant status of sows in a subtropical climate. Front Vet Sci 7:71. https://doi.org/10.3389/fvets.2020.00071

Article  PubMed  PubMed Central  Google Scholar 

Chen TT, Chen DW, Tian G, Zheng P, Mao XB, Yu J, He J, Huang ZQ, Luo YH, Luo JQ, Yu B (2020b) Effects of soluble and insoluble dietary fiber supplementation on growth performance, nutrient digestibility, intestinal microbe and barrier function in weaning piglet. Anim Feed Sci Technol 260:114335. https://doi.org/10.1016/j.anifeedsci.2019.114335

Article  CAS  Google Scholar 

Chen ZJ, Xie YQ, Luo JY, Chen T, Xi QY, Zhang YL, Sun JJ (2021) Dietary supplementation with Moringa oleifera and mulberry leaf affects pork quality from finishing pigs. J Anim Physiol Ani Nutr 105(1):72–79. https://doi.org/10.1111/jpn.13450

Article  CAS  Google Scholar 

Cheng CS, Wei HK, Xu CH, Xie XW, Jiang SW, Peng J (2018) Maternal soluble fiber diet during pregnancy changes the intestinal microbiota, improves growth performance, and reduces intestinal permeability in piglets. Appl Environ Microbiol 84(17). https://doi.org/10.1128/aem.001047-18

Cheng L, Xiaowei Z (2022) Current in vitro and animal models for understanding foods: human gut-microbiota interactions. J Agric Food Chem 70(40):12733–12745. https://doi.org/10.1021/acs.jafc.2c04238

Article  CAS  Google Scholar 

Cirino G, Szabo C, Papapetropoulos A (2023) Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues, and organs. Physiol Rev 103(1):31–276. https://doi.org/10.1152/physrev.00028.2021

Article  CAS  PubMed  Google Scholar 

Comino P, Williams BA, Gidley MJ (2018) In vitro fermentation gas kinetics and end-products of soluble and insoluble cereal flour dietary fibres are similar. Food Funct 9(2):898–905. https://doi.org/10.1039/c7fo01724c

Article  CAS  PubMed  Google Scholar 

Conway DME, Macario AJ (2009) Methanogenic archaea in health and disease: a novel paradigm of microbial pathogenesis. Int J Med Microbiol 299(2):99–108. https://doi.org/10.1016/j.ijmm.2008.06.011

Article  Google Scholar 

Dang GQ, Wang WX, Zhong RQ, Wu WD, Chen L, Zhang HF (2022) Pectin supplement alleviates gut injury potentially through improving gut microbiota community in piglets. Front Microbiol 13:1069694. https://doi.org/10.3389/fmicb.2022.1069694

Article  PubMed  PubMed Central  Google Scholar 

De Jong JA, DeRouchey JM, Tokach MD, Dritz SS, Goodband RD (2014) Effects of dietary wheat middlings, corn dried distillers grains with solubles, and net energy formulation on nursery pig performance. J Anim Sci 92(8):3471–3481. https://doi.org/10.2527/jas.2013-7350

Article  CAS  PubMed  Google Scholar 

Di Tommaso N, Gasbarrini A,

留言 (0)

沒有登入
gif