Use of Virtual Reality and 3D Models in Contemporary Practice of Cardiology

Burdea GC, Coiffet P. Virtual Reality Technology. New York: Wiley; 2003.

Book  Google Scholar 

Jiang Z, Guo Y, Wang Z. Digital twin to improve the virtual-real integration of industrial IoT. J Ind Inf Integr. 2021;22:100196.

Google Scholar 

Haleem A, Javaid M, Vaishya R. Industry 4.0 and its applications in orthopaedics. J Clin Orthop Trauma. 2019;10(3):615–6.

Article  PubMed  Google Scholar 

Bao X, Mao Y, Lin Q, Qiu Y, Chen S, Li L, et al. Mechanism of Kinect-based virtual reality training for motor functional recovery of upper limbs after subacute stroke. Neural Regen Res. 2013;8(31):2904–13.

PubMed  PubMed Central  Google Scholar 

Esfahlani SS. Mixed reality and remote sensing application of unmanned aerial vehicle in fire and smoke detection. J Ind Inf Integr. 2019;15:42–9.

Google Scholar 

Danielsson O, Holm M, Syberfeldt A. Augmented reality smart glasses in industrial assembly: Current status and future challenges. J Ind Inf Integr. 2020;20:100175.

Google Scholar 

Moro C, Stromberga Z, Raikos A, Stirling A. The effectiveness of virtual and augmented reality in health sciences and medical anatomy. Anat Sci Educ. 2017;10(6):549–59.

Article  PubMed  Google Scholar 

Plasencia DM. One step beyond virtual reality: connecting past and future developments. XRDS. 2015;22(1):18–23.

Article  Google Scholar 

Abrash M. Why You Won’t See Hard AR Anytime Soon. Available at http://blogs.valvesoftware.com/abrash/why-you-wont-see-hard-ar-anytime-soon/. Accessed May 2017.

Jan ANB, Joris JD. Design and quantitative resolution measurements of an optical virtual sectioning three-dimensional imaging technique for biomedical specimens, featuring two-micrometer slicing resolution. J Biomed Opt. 2007;12(1):014039.

Article  Google Scholar 

De la Peña N, Weil P, Llobera J, Spanlang B, Friedman D, Sanchez-Vives MV, et al. Immersive Journalism: Immersive Virtual Reality for the First-Person Experience of News. Presence. 2010;19(4):291–301.

Article  Google Scholar 

Silva JNA, Southworth M, Raptis C, Silva J. Emerging Applications of Virtual Reality in Cardiovascular Medicine. JACC: Basic Transl Sci. 2018;3(3):420–30.

PubMed  Google Scholar 

Rymuza B, Grodecki K, Kaminski J, Scislo P, Huczek Z. Holographic imaging during transcatheter aortic valve implantation procedure in bicuspid aortic valve stenosis. Kardiol Pol. 2017;75(10):1056.

Article  PubMed  Google Scholar 

Gallagher AG, Cates CU. Virtual reality training for the operating room and cardiac catheterisation laboratory. The Lancet. 2004;364(9444):1538–40.

Article  Google Scholar 

Southworth MK, Silva JR, Silva JNA. Use of extended realities in cardiology. Trends Cardiovasc Med. 2020;30(3):143–8.

Article  PubMed  Google Scholar 

Culbertson C, Nicolas S, Zaharovits I, London ED, De La Garza R, Brody AL, et al. Methamphetamine craving induced in an online virtual reality environment. Pharmacol Biochem Behav. 2010;96(4):454–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

•• Arslan F, Gerckens U. Virtual support for remote proctoring in TAVR during COVID-19. Catheter Cardiovasc Interv. 2021;98(5):E733–6. This study demonstrates that virtual monitoring and proctoring of real time highly complex procedures such as TAVR is feasible and efficacious.

Article  PubMed  PubMed Central  Google Scholar 

Jang S-J, Liu J, Singh G, Al’Aref SJ, Caprio A, Moghadam AAA, et al. Abstract 11714: Augmented Reality Guidance for Transcatheter Septal Puncture Procedure in Structural Heart Interventions. Circulation. 2019;140(Suppl_1):A11714-A.

Google Scholar 

Cox K, Privitera MB, Alden T, Silva JR, Silva JNA. Chapter 21 - Augmented reality in medical devices. In Applied Human Factors in Medical Device Design, Privitera M. B., Ed. New York, NY, USA: Academic, 2019;327–337. Accessed: Nov. 10, 2020. [Online]. Available: http://www.sciencedirect.com/science/article/pii/B9780128161630000219.

Goo HW, Park SJ, Yoo SJ. Advanced Medical Use of Three-Dimensional Imaging in Congenital Heart Disease: Augmented Reality, Mixed Reality, Virtual Reality, and Three-Dimensional Printing. Korean J Radiol. 2020;21(2):133–45.

Article  PubMed  PubMed Central  Google Scholar 

Stepanenko A, Perez LM, Ferre JC, Ybarra Falcon C, Perez de la Sota E, San Roman JA, et al. 3D Virtual modelling, 3D printing and extended reality for planning of implant procedure of short-term and long-term mechanical circulatory support devices and heart transplantation. Front Cardiovasc Med. 2023;10:1191705.

Article  PubMed  PubMed Central  Google Scholar 

Davies RR, Hussain T, Tandon A. Using virtual reality simulated implantation for fit-testing pediatric patients for adult ventricular assist devices. JTCVS Tech. 2021;6:134–7.

Article  PubMed  Google Scholar 

Ramaswamy RK, Marimuthu SK, Ramarathnam KK, Vijayasekharan S, Rao KGS, Balakrishnan KR. Virtual reality-guided left ventricular assist device implantation in pediatric patient: Valuable presurgical tool. Ann Pediatr Cardiol. 2021;14(3):388–92.

Article  PubMed  PubMed Central  Google Scholar 

NHS. Surgeons use virtual reality to operate from different sides of the world. https://www.bartshealth.nhs.uk/news/surgeons-use-virtual-reality-to-operate-from-different-sides-of-the-world-2171.

Liu J, Al’Aref SJ, Singh G, Caprio A, Moghadam AAA, Jang SJ, et al. An augmented reality system for image guidance of transcatheter procedures for structural heart disease. PLoS ONE. 2019;14(7):e0219174.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chu MW, Moore J, Peters T, Bainbridge D, McCarty D, Guiraudon GM, et al. Augmented reality image guidance improves navigation for beating heart mitral valve repair. Innovations (Phila). 2012;7(4):274–81.

Article  PubMed  Google Scholar 

Bruckheimer E, Rotschild C. Holography for imaging in structural heart disease. EuroIntervention. 2016;12 Suppl X:X81–X4.

Article  PubMed  Google Scholar 

Currie ME, McLeod AJ, Moore JT, Chu MW, Patel R, Kiaii B, et al. Augmented reality system for ultrasound guidance of transcatheter aortic valve implantation. Innovations (Phila). 2016;11(1):31–9; discussion 9.

Butera G, Sturla F, Pluchinotta FR, Caimi A, Carminati M. Holographic augmented reality and 3D printing for advanced planning of sinus venosus ASD/partial anomalous pulmonary venous return percutaneous management. JACC Cardiovasc Interv. 2019;12(14):1389–91.

Article  PubMed  Google Scholar 

Zbronski K, Rymuza B, Scislo P, Kochman J, Huczek Z. Augmented reality in left atrial appendage occlusion. Kardiol Pol. 2018;76(1):212.

Article  PubMed  Google Scholar 

Bruckheimer E, Rotschild C. Holography in congenital heart disease: Diagnosis and transcatheter treatment. In: Butera G, Chessa M, Eicken A, Thomson JD, editors. Atlas of cardiac catheterization for congenital heart disease. Cham: Springer International Publishing; 2019. p. 383–6.

Chapter  Google Scholar 

Gartner: 25% of people to spend 1 hour daily in the metaverse by 2026 (2022) https://futureiot.tech/gartner-25-of-people-to-spend-1-hour-daily-in-the-Metaverse-by-2026/.

Deng S, Wheeler G, Toussaint N, Munroe L, Bhattacharya S, Sajith G, et al. A virtual reality system for improved image-based planning of complex cardiac procedures. J Imaging. 2021;7(8).

Raimondi F, Vida V, Godard C, Bertelli F, Reffo E, Boddaert N, et al. Fast-track virtual reality for cardiac imaging in congenital heart disease. J Card Surg. 2021;36(7):2598–602.

Article  PubMed  Google Scholar 

Kim B, Loke YH, Mass P, Irwin MR, Capeland C, Olivieri L, et al. A novel virtual reality medical image display system for group discussions of congenital heart disease: Development and usability testing. JMIR Cardio. 2020;4(1):e20633.

Article  PubMed  PubMed Central  Google Scholar 

Patel N, Costa A, Sanders SP, Ezon D. Stereoscopic virtual reality does not improve knowledge acquisition of congenital heart disease. Int J Cardiovasc Imaging. 2021;37(7):2283–90.

Article  PubMed  Google Scholar 

Lau I, Gupta A, Sun Z. Clinical value of virtual reality versus 3D printing in congenital heart disease. Biomolecules. 2021;11(6).

Milano EG, Pajaziti E, Schievano S, Cook A, Capelli C. P369 Patient specific virtual reality for education in congenital heart disease. Eur Heart J Cardiovasc Imaging. 2020;21(Supplement_1).

Ong CS, Krishnan A, Huang CY, Spevak P, Vricella L, Hibino N, et al. Role of virtual reality in congenital heart disease. Congenit Heart Dis. 2018;13(3):357–61.

Article  PubMed  Google Scholar 

Sadeghi AH, Maat A, Taverne Y, Cornelissen R, Dingemans AC, Bogers A, et al. Virtual reality and artificial intelligence for 3-dimensional planning of lung segmentectomies. JTCVS Tech. 2021;7:309–21.

Article  PubMed  PubMed Central  Google Scholar 

van de Woestijne PC, Bakhuis W, Sadeghi AH, Peek JJ, Taverne Y, Bogers A. 3D virtual reality imaging of major aortopulmonary collateral arteries: A novel diagnostic modality. World J Pediatr Congenit Heart Surg. 2021;12(6):765–72.

Article  PubMed  PubMed Central  Google Scholar 

• Franson D, Dupuis A, Gulani V, Griswold M, Seiberlich N. A system for real-time, online mixed-reality visualization of cardiac magnetic resonance images. J Imaging. 2021;7(12):274. The work from this paper demonstrates real time system which allows users to view a mixed-reality with cardaic MRI that is shorter than the acquisition time.

Article  PubMed  PubMed Central  Google Scholar 

Bindschadler M, Buddhe S, Ferguson MR, Jones T, Friedman SD, Otto RK. HEARTBEAT4D: An open-source toolbox for turning 4D cardiac CT into VR/AR. J Digit Imaging. 2022;35(6):1759–67.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aeckersberg G, Gkremoutis A, Schmitz-Rixen T, Kaiser E. The relevance of low-fidelity virtual reality simulators compared with other learning methods in basic endovascular skills training. J Vasc Surg. 2019;69(1):227–35.

Article  PubMed  Google Scholar 

Andersen NL, Jensen RO, Posth S, Laursen CB, Jørgensen R, Graumann O. Teaching ultrasound-guided peripheral venous catheter placement through immersive virtual reality: An explorative pilot study. Medicine (Baltimore). 2021;100(27):e26394.

Article  PubMed  Google Scholar 

Arshad I, De Mello P, Ender M, McEwen JD, Ferré ER. Reducing cybersickness in 360-degree virtual reality. Multisens Res. 2021:1–17.

Jung C, Wolff G, Wernly B, Bruno RR, Franz M, Schulze PC, et al. Virtual and augmented reality in cardiovascular care: State-of-the-art and future perspectives. JACC Cardiovasc Imaging. 2022;15(3):519–32.

Article  PubMed  Google Scholar 

Mahtab EAF, Egorova AD. Current and future applications of virtual reality technology for cardiac interventions. Nat Rev Cardiol. 2022;19(12):779–80.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif