Synthesis and Characterization of New Schiff Base Containing 1,2,4-Triazole-3-thione Moiety and Its Complexes with Some Transition Metal Ions: Spectroscopic and Computational Studies

Shaker, R.M., Arkivoc, 2006, vol. 2006, no. 9, p. 59. https://doi.org/10.3998/ark.5550190.0007.904

Radwan, A.A., Alanazi, F.K., and Al-Agamy, M.H., Braz. J. Pharm. Sci., 2017, vol. 53, no. 1. https://doi.org/10.1590/s2175-97902017000115239

Montoir, D., Guillon, R., Gazzola, S., Ourliac-Garnier, I., Soklou, K.E., Tonnerre, A., Picot, C., Planchat, A., Pagniez, F., Le Pape, P., and Logé, C., Eur. J. Med. Chem., 2020, vol. 189, 112082, https://doi.org/10.1016/j.ejmech.2020.112082

Muley, A., Karumban, K.S., Gupta, P., Kumbhakar, S., Giri, B., Raut, R., Misra, A., and Maji, S., J. Organomet. Chem., 2021, p. 954. https://doi.org/10.1016/j.jorganchem.2021.122074

Ihmaid, S.K., Aljuhani, A., Alsehli, M., Rezki, N., Alawi, A., Aldhafiri, A.J., Salama, S.A., Ahmed, H.E.A., and Aouad, M.R., J. Mol. Struct., 2022, vol. 1249, Article ID 131568. https://doi.org/10.1016/j.molstruc.2021.131568

Nabipour, H., Wang, X., Song, L., and Hu, Y., Composites (A), 2021, vol. 143, 106284. https://doi.org/10.1016/j.compositesa.2021.106284

Jian, R.-K., Pang, F.-Q., Lin, Y.-C., and Bai, W.-B., J. Colloid Interface Sci., 2022, vol. 609, p. 513. https://doi.org/10.1016/j.jcis.2021.11.054

Sanina, N.A., Yakuschenko, I.K., Gadomskii, S.Ya., Utenyshev, A.N., Dorovatovskii, P.V., Lazarenko, V.A., Emel’syanova, N.S., Zagainova, E.A., Ovanesyan, N.S., Mumyatova, V.A., Balakina, A.A., Terent’sev, A.A., and Aldoshin, S.M., Polyhedron, 2022, vol. 220, Article ID 115822. https://doi.org/10.1016/j.poly.2022.115822

Venugopala, K.N., Kandeel, M., Pillay, M., Deb, P.K., Abdallah, H.H., Mahomoodally, M.F., and Chopra, D., Antibiotics, 2020, vol. 9, no. 9, p. 559. https://doi.org/10.3390/antibiotics9090559

Zharikov, A.A., Vinogradov, R.A., Zezina, E.A., Pozdnyakov, A.S., Feldman, V.I., Vasiliev, A.L., and Zezin, A.A., Colloid Interface Sci. Commun., 2022, vol. 47, Article ID 100602. https://doi.org/10.1016/j.colcom.2022.100602

Schlagintweit, J.F., Dyckhoff, F., Nguyen, L., Jakob, C.H.G., Reich, R.M., and Kühn, F.E., J. Catal., 2020, vol. 383, p. 144. https://doi.org/10.1016/j.jcat.2020.01.011

Article  CAS  Google Scholar 

Wrzosek, B., Cukras, J., Dobrowolski, M.A., and Bukowska, J., J. Phys. Chem. (C), 2017, vol. 121, no. 17, p. 9282. https://doi.org/10.1021/acs.jpcc.6b12361

Kumari, B., Singh, K., and Sharma, A., Chem. Data Collect., 2022, vol. 38, Article ID 100833. https://doi.org/10.1016/j.cdc.2022.100833

Deodware, S.A., Barache, U.B., Chanshetti, U.B., Sathe, D.J., Panchsheela Ashok, U., Gaikwad, S.H., and Prasad Kollur, S, Results Chem., 2021, vol. 3, Article ID 100162. https://doi.org/10.1016/j.rechem.2021.100162

Heffern, M.C., Reichova, V., Coomes, J.L., Harney, A.S., Bajema, E.A., and Meade, T.J., Inorg. Chem., 2015, vol. 54, no. 18, p. 9066. https://doi.org/10.1021/acs.inorgchem.5b01415

Zhong, X., Li, Z., Shi, R., Yan, L., Zhu, Y., and Li, H., ACS Appl Nano Mater., 2022, vol. 5 no. 10, p. 13998. https://doi.org/10.1021/acsanm.2c03477

Wang, J., Meng, Q., Yang, Y., Zhong, S., Zhang, R., Fang, Y., Gao, Y., and Cui, X., ACS Sens., 2022, vol. 7, no. 9, p. 2521. https://doi.org/10.1021/acssensors.2c01550

Fouda, A.E.-A.S., Abd el-Maksoud, S.A., El-Sayed, E.H., Elbaz, H.A., and Abousalem, A.S., RSC Adv., 2021, vol. 11, no. 31, p. 19294. https://doi.org/10.1039/D1RA03083C

El Ibrahimi, B., Soumoue, A., Jmiai, A., Bourzi, H., Oukhrib, R., El Mouaden, K., El Issami, S., and Bazzi, L., J. Mol. Struct., 2016, vol. 1125, p. 93. https://doi.org/10.1016/j.molstruc.2016.06.057

Chauhan, D.S., Quraishi, M.A., Carrière, C., Seyeux, A., Marcus, P., and Singh, A., J. Mol. Liq., 2019, vol. 289, p. 111113. https://doi.org/10.1016/j.molliq.2019.111113

Mather, J.C., Wyllie, J.A., Hamilton, A., Soares da Costa, T.P., and Barnard, P.J., Dalton Trans., 2022, vol. 51, no. 32, p. 12056. https://doi.org/10.1039/D2DT01657E

Zhang, W., Lee, C., and Bushnell, E.A.C., Can. J. Chem., 2021, vol. 99 no. 3, p. 346. https://doi.org/10.1139/cjc-2020-0318

Al-Jorani, K.R., Abbood, A.F., Ali, A.A., Kadhim, M.M., and Hamdan, S.D., Struct. Chem.,2023, vol. 34, p. 1143. https://doi.org/10.1007/s11224-022-02069-w

Polêto, M.D., Rusu, V.H., Grisci, B.I., Dorn, M., Lins, R.D., and Verli, H., Front. Pharmacol., 2018, vol. 9, p. 395. https://doi.org/10.3389/fphar.2018.00395

Article  CAS  PubMed  PubMed Central  Google Scholar 

Solà, M., Boldyrev, A.I., Cyrański, M.K., Krygowski, T.M. and Merino, G., Aromaticity and Antiaromaticity: Concepts and Applications, John Wiley & Sons, Ltd., 2022. https://doi.org/10.1002/9781119085928.ch9

David, F.F., María, G-E., Sebastian, K., Felix, S., Jens, M., Andre, S., Thomas, K., David, C., Blakemore, and David, WCM., Org. Lett., 2023. https://doi.org/10.1021/acs.orglett.3c00994

Aldeghi, M., Malhotra, S., Selwood, D.L., and Chan, A.W.E., Chem. Biol. Drug Des., 2014, vol. 83, p. 450. https://doi.org/10.1111/cbdd.12260

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stephen, D., Roughley, and Allan, M.J., J. Med. Chem., 2011, vol. 54, no. 10, p. 3451. https://doi.org/10.1021/jm200187y

Article  CAS  Google Scholar 

Aly, A.A., Hassan, A.A., Makhlouf, M.M., and Bräse, S., Molecules, 2020, vol. 25, no. 13, p. 3036. https://doi.org/10.3390/molecules25133036

Article  CAS  PubMed  PubMed Central  Google Scholar 

Askerov, R.K., Magerramov, A.M., Osmanov, V.K., Baranov, E.V., Borisova, G.N., and Borisov, A.V., Russ. J. Coord. Chem., 2019, vol. 45 no. 8, p. 555. https://doi.org/10.1134/S1070328419070017

Vasil’schenko, I.S., Burlov, A.S., Shestakova, T.E., Ikorskii, V.N., Kuz’smenko, T.A., Vlasenko, V.G., Bozhenko, K.V., Divaeva, L.N., Morkovnik, A.S., Bogomyakov, A.S., Garnovskii, D.A., Uraev, A.I., Pirog, I.V., Borodkin, G.S., Utenyshev, A.N., Borodkina, I.G., Karpov, O.A., Khrulev, A.A., Uflyand, I.E., Garnovskii, A.D., Aldoshin, S.M., and Minkin, V.I., Russ. J. Coord. Chem., 2010, vol. 36, no. 3, p. 189. https://doi.org/10.1134/S107032841003005X

Hussein, M.A., Shaker, R.M., Ameen, M.A., and Mohammed, M.F., Arch. Pharm. Res., 2011, vol. 34, no. 8, p. 1239. https://doi.org/10.1007/s12272-011-0802-z

Hassan, A.Y., Phosphoru,s Sulfur, Silicon, Relat. Elem., 2009, vol. 184, no. 11, p. 2759. https://doi.org/10.1080/10426500802470769

Amer, S., El-Wakiel, N., and El-Ghamry, H., J. Mol. Struct., 2013, vol. 1049, p. 326. https://doi.org/10.1016/j.molstruc.2013.06.059

Aouad, M.R., Messali, M., Rezki, N., Ali, A.A.-S., and Lesimple, A., Acta Pharmaceutica, 2015, vol. 65, no. 2, p. 117. https://doi.org/10.1515/acph-2015-0011

Shaker, S.A., Mod. Appl. Sci., 2009, vol. 3, no. 12. https://doi.org/10.5539/mas.v3n12p88

Haddad, R., Yousif, E., and Ahmed, A., SpringerPlus, 2013, vol. 2, no. 1, Article ID 510. https://doi.org/10.1186/2193-1801-2-510

BenGuzzi S.A., Abubakr A.S., and Hassan S.S., Appl. Organomet. Chem., 2023, vol. 37, no. 9, e7203, https://doi.org/10.1002/aoc.7203

Singh, A.K., Pandey, O.P., and Sengupta, S.K., Spectrochim. Acta (A), 2012, vol. 85, no. 1, P. 1, https://doi.org/10.1016/j.saa.2011.08.019

Bazargan, M., Mirzaei, M., Franconetti, A., and Frontera, A., Dalton Trans., 2019, vol. 48, no. 17, p. 5476. https://doi.org/10.1039/C9DT00542K

Brzyska, W., and Rzączyńska, Z., Monatsh. Chem., 1988, vol. 119, no. 2, p. 147. https://doi.org/10.1007/BF00809588

Zhukova, E.S., Torgashev, V.I., Gorshunov, B.P., Lebedev, V.V., Shakurov, G.S., Kremer, R.K., Pestrjakov, E.V., Thomas, V.G., Fursenko, D.A., Prokhorov, A.S., and Dressel, M., J Chem. Phys., 2014, vol. 140, no. 22. https://doi.org/10.1063/1.4882062

Praprotnik, M., Janežič, D., and Mavri, J., J. Phys. Chem. (A), 2004, vol. 108, no. 50, p. 11056. https://doi.org/10.1021/jp046158d

Fournier, J.A., Wolke, C.T., Johnson, C.J., Johnson, M.A., Heine, N., Gewinner, S., Schöllkopf, W., Esser, T.K., Fagiani, M.R., Knorke, H., and Asmis, K.R., Proc. Nat. Acad. Sci., 2014, vol. 111 no. 51, p. 18132. https://doi.org/10.1073/pnas.1420734111

Silverstein, R.M., Webster, F.X., Kiemle, D.J., and Bryce, D.L., Spectrometric Identification of Organic Compounds, New York: Wiley, 2015, p. 81.

Bagihalli, G.B., Avaji, P.G., Patil, S.A., and Badami, P.S., Eur. J. Med. Chem., 2008, vol. 43, no. 12, p. 2639. https://doi.org/10.1016/j.ejmech.2008.02.013

Bader, A.T., Al-qasii, N.A.R., Shntaif, A.H., El Marouani, M., AL Majidi, M.I.H., Trif, L., and Boulhaoua, M., Indones. J. Chem., 2021, vol. 22, no. 1, p. 223. https://doi.org/10.22146/ijc.68859

Tyagi, P., Tyagi, M., Agrawal, S., Chandra, S., Ojha, H., and Pathak, M., Spectrochim. Acta (A), 2017, vol. 171, p. 246. https://doi.org/10.1016/j.saa.2016.08.008

Abdulghani, A.J. and Hussain, R.K., Open J. Inorg. Chem., 2015, vol. 5, no. 4, p. 83. https://doi.org/10.4236/ojic.2015.54010

Deepika, P., Vinusha, H.M., Begum, M., Ramu, R., Shirahatti, P.S., and Nagendra Prasad, M.N., Heliyon, 2022, vol. 8, no. 6, e09648. https://doi.org/10.1016/j.heliyon.2022.e09648

Jóźwiak, M., Stępień, K., Wrzosek, M., Olejarz, W., Kubiak-Tomaszewska, G., Filipowska, A., Filipowski, W., and Struga, M., Molecules, 2018, vol. 23, no. 4, p. 822. https://doi.org/10.3390/molecules23040822

Maria, D., Marta, K.S., Anna, C., Ewa, J-W., Krystyna, S., and Anna, E. K., Acta Pol. Pharm., 2002, vol. 59, no. 4, p. 281. https://ppm.wum.edu.pl/info/article/WUM6cfc654101834f249e88a610e86fe0f1/

Google Scholar 

Sumrra, S.H., Sahrish, I., Raza, M.A., Ahmad, Z., Zafar, M.N., Chohan, Z.H., Khalid, M., and Ahmed, S., Monatsh. Chem., 2020, vol. 151, no. 4, p. 549. https://doi.org/10.1007/s00706-020-02571-z

Meyerson, S., Appl. Spectrosc., 1955, vol. 9 no. 3, p. 120. https://doi.org/10.1366/000370255774634034

Burlingame, A.L., and Schnoes, H.K., in: Organic Geochemistry, Berlin: Springer, 1969, p. 89. https://doi.org/10.1007/978-3-642-87734-6_4

Tormyshev, V.M., Kur, S.Ya., and Koptyug, V.A., Bull. Acad. Sci. USSR, Div. Chem. Sci., 1977, vol. 26, no. 5, p. 968. https://doi.org/10.1007/BF01152695

Ali, A., Al-Hassani, R., Hussain, D., Jabir, M., and Meteab, H., Nano Biomed. Eng., 2020, vol. 12, no. 1. https://doi.org/10.5101/nbe.v12i1.p75-89

Miessler, G.L., Fischer, P.J., and Tarr, D.A., Inorganic Chemistry, Boston, 2014, p. 422.

Potts, K.T., Chem. Rev., 1961, vol. 61, no. 2, p. 87. https://doi.org/10.1021/cr60210a001

Lawrance, G.A., Introduction to Coordination Chemistry, Chichester: John Wiley & Sons, Ltd., 2010. https://doi.org/10.1002/9780470687123

Ruiz, J., Colacio, E., de Dios López-Gonzalez, J., Sundberg, M., and Kivekäs, R., J. Chem. Soc. Dalton Trans., 1990, no. 9, p. 2747. https://doi.org/10.1039/DT9900002747

Haga, Masaaki., Dodsworth, E.S., Lever, A.B.P., Boone, S.R., and Pierpont, C.G., J. Am. Chem. Soc., 1986, vol. 108, no. 23, p. 7413. https://doi.org/10.1021/ja00283a049

Dar, U.A., Salunke-Gawali, S., Shinde, D., Bhand, S., and Satpute, S., Eng. Sci., 2021, vol. 15, p. 105. https://doi.org/10.30919/es8d492

Park, J.G., Aubrey, M.L., Oktawiec, J., Chakarawet, K., Darago, L.E., Grandjean, F., Long, G.J., and Long, J.R., J. Am. Chem. Soc., 2018, vol. 140, no. 27, p. 8526. https://doi.org/10.1021/jacs.8b03696

Huheey, J.E., Inorganic Chemistry: Principles of Structure and Reactivity, Harper & Row, 1983, p. 1852.

Lomjanský, D., Rajnák, C., Titiš, J., Moncoľ, J., Smolko, L., and Boča, R., Inorg. Chim. Acta, 2018, vol. 483, p. 352. https://doi.org/10.1016/j.ica.2018.08.029

Hisham, M.A., Moustafa, E.M., Moustafa, Y.N., and Ehab, A.A., J. Mol. Struct., 2015, vol. 1086, p. 223. https://doi.org/10.1016/j.molstruc.2015.01.017

Article  CAS  Google Scholar 

Issa, R.M., Gaber, M., Al-Wakiel, N.A.-E. and Fathalla, S.K., Chin. J. Chem., 2012, vol. 30, no. 3, p. 547. https://doi.org/10.1002/cjoc.201280004

Article  CAS  Google Scholar 

AbdelLatif, S., and Issa, Y., Nat. Sci., 2010, vol. 2, no. 9, p. 1035. https://doi.org/10.4236/ns.2010.29127

Article  CAS  Google Scholar 

Khlood, A.-M., J. Mol. Struct., 2022, vol. 1268, p. 133626, https://doi.org/10.1016/j.molstruc.2022.133626

Article  CAS  Google Scholar 

Eşme, A., J. Balıkesir Univ. Inst. Sci. Technol., 2017, vol. 19, no. 2, p. 99. https://doi.org/10.25092/baunfbed.340553

Article  Google Scholar 

Karelson, M., Lobanov, V.S., and Katritzky, A.R., Chem Rev., 1996, vol. 96, no. 3, p. 1027. https://doi.org/10.1021/cr950202r

Esme, A. and Sagdinc, S.G., J. Mol. Struct., 2013, vol. 1048, p. 185. https://doi.org/10.1016/j.molstruc.2013.05.022

O’sboyle, N.M., Tenderholt, A.L., and Langner, K.M., J. Comput. Chem., 2008, vol. 29, no. 5, p. 839. https://doi.org/10.1002/jcc.20823

Joshi, B. D., Thakur, G., and Chaudhary, M.K., Sci. World, 2021, no. 14, no. 14, p. 21. https://doi.org/10.3126/sw.v14i14.34978

Gaussian 03, Revision C.02. Gaussian 03, Revision B.04, Gaussian, Inc., Wallingford CT 2004.

GaussView, Version 6.1., 2016.

Hohenberg, P. and Kohn, W., Phys. Rev. B, 1964, vol. 136, no. 3, p. B864. https://doi.org/10.1103/PhysRev.136.B864

Kohn, W., and Sham, L.J., Phys. Rev. A, 1965, vol. 140, no. 4, p. A1133. https://doi.org/10.1103/PhysRev.140.A1133

Stephens, P.J., Devlin, F.J., Chabalowski, C.F., and Frisch, M.J., J. Phys. Chem., 1994, vol. 98, no. 45, p. 11623. https://doi.org/10.1021/j100096a001

Hay, P.J. and Wadt, W.R., J. Chem. Phys., 1985, vol. 82, no. 1, p. 299. https://doi.org/10.1063/1.448975

Sayin, K., Kariper, S.E., Taştan, M., Sayin, T.A., and Karakaş, D., J. Mol. Struct., 2019, vol. 1176, p. 478. https://doi.org/10.1016/j.molstruc.2018.08.103

留言 (0)

沒有登入
gif