Percutaneous intravascular micro-axial blood pump: current state and perspective from engineering view

Weber DM, Raess DH, Henrques JPS, Siess T. Principles of Imella cardiac support. Card Interv Today. 2009;3:6.

Google Scholar 

Ramzy D, Soltesz E, Anderson M. New surgical circulatory support system outcomes. ASAIO J. 2020;66:746–52.

Article  PubMed  PubMed Central  Google Scholar 

Prinzing A, Herold U, Berkefeld A, Krane M, Lange R, Voss B. Left ventricular assist devise-current state and perspectives. J Thorac Dis. 2016;8:E660-666.

Article  PubMed  PubMed Central  Google Scholar 

Rosenblum H, Kapur NK, Abraham WT, Udelson J, Itkin M, Uriel N, Voors AA, Burkhoff D. Conceptual considerations for device-based therapy in acute decompensated heart failure DRI2P2S. Cir Heart Fail. 2020;13:1–15.

Google Scholar 

Merhige ME, Smalling RW, Cassidy D, Barrett R, Short J, Wampler RK. Effect of the hemopump left ventricular assist device on regional myocardial perfusion and function. Criculation. 1989;80:158–66.

Google Scholar 

Butler KC, Moise CJ, Wampler RK. The Hemopump®-a new cardiac prothesis device. IEEE Trans BME. 1990;37:193–6.

Article  CAS  Google Scholar 

Yamazaki K, Okamoto E, Yamamoto K, Mitamura Y, Tanaka T, Yozu R. The valvopump, an axial blood pump implanted at the heart valve position: concept and initial results. Artif Org. 1992;16:297–9.

Article  CAS  Google Scholar 

Mitamura Y, Fujiyoshi M, Yoshida T, Yozu R, Okamoto E, Tanaka T, Kawada S. A ferrofluidic seal specially designed for rotary blood pumps. Artif Org. 1996;20:497–502.

Article  CAS  Google Scholar 

Okamoto E, Yano T, Sekine K, Inoue Y, Shiraishi Y, Yambe T, Mitamura Y. Development and initial performance of a miniature axial flow blood pump using magnetic fluid shaft seal. J Artif Org. 2023;23:12–6.

Article  Google Scholar 

Van Mieghem NM, Daemen J, den Uil C, Dur O, Joziasse L, Maugenest AM, Fitzgerald K, Parker C, Muller P, van Geuns R-J. Design and principle of the HeartMate PHP (percutaneous heart pump). Euro Interv. 2018;13:1662–6.

Google Scholar 

Introducing heartmate phpTM 2023 https://sante.ro/wp-content/uploads/2016/04/PHP-Brochure_English_2015.pdf Accessed 5 July 2023

Thoratec Announces the First Human Use of HeartMate PHP 2023 https://www.dicardiology.com/article/thoratec-announces-first-human-use-heartmate-php Accessed 5 July 2023

Kapur NK, Jorde UP, Sharma S, Pyo RT, Rajagopal V, Lotun K, Kimmelstiel C, Kuo HC, Zhang Z, Ying SW, West NEJ, Kandzari DE. Early experience with the HeartMate percutaneous heart pump from the shield ii trial. ASAIO J. 2022;68:492–8.

Article  PubMed  Google Scholar 

ClinicalTrials.gov. SHIELD II Clinical Investigation (SHIELD II). ClinicalTrials.gov Identifier: NCT02468778 2023 https://clinicaltrials.gov/ct2/show/NCT02468778?term=HeartMate+PHP&draw=2&rank=3 Accessed 5 July 2023

RetainÖhlinPeterzénGranfeldtSteenEmanuelsson ÖHBHSH. Initial tests with a new cardiac assist device: ASAIO J. 1999;45:317–21.

Article  Google Scholar 

RetainSteenÖhlin ÖSH. Hemodynamic effects of a new percutaneous circulatory support device in a left ventricular failure modelm. ASAIO J. 2003;49:731–6.

Article  Google Scholar 

Cardiobridge Inc.2023 https://www.cardiobridge.com/ Accessed 5 July 2023

SmithRetainKeebleDixonRothman EJÖTKMT. A first-in-man study of the retain catheter pump for circulatory support fin patients undergoing high-risk percutaneous coronary intervention. Catheter Cardiovasc Interv. 2009;73:859–65.

Article  Google Scholar 

Keeble TR, Karamasis GV, Rothman MT, Ricksten SE, Ferrari M, Hullin R, Schersén F, Retain Ö, Kirking ST, Cleland JGF, Smith EJ. Percutaneous haemodynamic and renal support in patients presenting with decompensated heart failure: a multi-centre efficacy study using the Reitan Catheter Pump(RCP). Int J Cardio. 2019;275:53–8.

Article  Google Scholar 

Napp LC, Mariani S, Ruhparwasr A, Schmack B, Keeble T, Retain Ö, Hanke JS, Dogan G, Hiss M, Bauersachs J, Haverich A, Schmitto JD. Fisrt-in-man use of the percutaneous 10F reitan catheter pump for cardiorenal syndrome. ASAIO J. 2022;68:e99-101.

Article  PubMed  Google Scholar 

Second heart assist HP 2023 https://secondheartinc.com/ Accessed 5 July 2023

Miller LW, Ebner A, Leonhardt H, Richardson MJ. First in human experience with the second heart assist device. ASAIO J. 2020;66:29.

Google Scholar 

Kapur N, Hernandez-Montfort J, Kanwar MK. A new dawn for ventricular unloading as a bridge to heart transplantation. ASAIO J. 2022;68:760–2.

Article  PubMed  Google Scholar 

Use of the Impella BTR™ in Patients With Heart Failure: An Early Feasibility Study (BTR EFS) 2023 https://clinicaltrials.gov/ct2/show/NCT05291884 Accessed 5 July 2023

Magenda Medical Inc.2023 https://magentamed.com/ Accessed 5 July 2023

Flores JJ, Valdovinos J. Development of a catheter-deliverable implantable intravascular blood pump speed controller. ASAIO J. 2022;68 supplement 2:46.

Article  Google Scholar 

Shabari FR, George J, Cuchiara MP, Langsner RJ, Heuring JJ, Cohn WE, Hertzog BA, Delgado R. Improved hemodynamics with a novel miniaturized intra-aortic axial flow pump in a pocine model of acute left ventricular dysfunction. ASAIO J. 2013;59:240–5.

Article  PubMed  Google Scholar 

Annamalai SK, Esposito ML, Reyelt LA, Natov P, Jorde LE, Karas RH, Kapur NK. Abdominal positioning of the next generation intra-aortic fluid entrainment pump(Aortix) improves cardiac output in a swine model of heart failure. Circ Heart Fail. 2018;11:e005115.

Article  PubMed  PubMed Central  Google Scholar 

Vora AN, Jones WS, DeVore AD, Ebner A, Clifton W, Patel MR. First-in-human experience with aortix intraaortic pump. Catheter interv. 2019;93:428–33.

Article  Google Scholar 

Circulatory Support without surgery for heart failure patients 2023 https://www.maxongroup.us/medias/sys_master/8817008312350.pdf?attachment=true Accessed 25 July 2023

Lu C, Krisher J, Benavides O, Palmer A, Edidin A, Durst C, Heuring J. Long-term safety and durability of novel intra-aortic percutaneous mechanical circulatory support device. JHLT. 2022;41:1712–5.

Google Scholar 

Cowger JA. Safety and performance of the Aortix™ device in patients with decompensated heart failure and cardiorenal syndrome. Boston: Presented at Technology and Heart Failure Therapeutics conference; 2023.

Google Scholar 

Puzzle Medical Devices Inc. 2023 https://www.puzzlemed.com/ Accessed 5 July 2023

GeorgesTrudeauMartineauRochonPotvinEbnerGénéreux GFJDMJAP. First-in-human experience with the ModulHeart device for mechanical circulatory support and renal perfusion. J SCAI. 2022;1:100449.

Google Scholar 

Georges G, Trudeau F, Potvin J, Potus F, Martineau S, Généreux P. Preservation of von willebrand factor activity with the modulheart device. J Am Coll Cardio Basic Trans Sci. 2023;04:1–10.

Google Scholar 

Siess T, Nix C, Menzler F. From a lab type to a product: a retrospective view on Impella’s assist technology. Artif Organs. 2001;25:414–21.

Article  CAS  PubMed  Google Scholar 

Abiomed Impella RP. 2023 https://www.abiomed.com/products-and-services/impella/impella-rp-with-smartassist Accessed 7 December 2023

Pieri M, Pappalardo F. Impella RP in the treatment of right ventricular failure: what we know and where we go. J Cardiothorac Vasc Anesth. 2018;32:2339–43.

Article  PubMed  Google Scholar 

Han JJ. Impella RP Flex with SmartAssist receives FDA pre-market approval. Artif Organs. 2023;47:10–1.

Article  PubMed  Google Scholar 

Janeczek C, Gföhler M, Harasek M, Mohl W 2018Evaluation of hemolysis caused by a miniature heart catheter pump. In 2018 11th Biomedical Engineering International conference BMEiCON 1–5. IEEE

ZakyNordanKapurVestDenorrioChenCouperKawabori MTNKARDFYGSM. Impella 5.5 suport beyond 50 days as bridge to heart transprant in end-stage heart failure patients. ASAIO J. 2023;69:159–62.

Google Scholar 

Lübbe AS, Bergemann C, Riess H, Schriever F, Reichardt P, Possingger K, Matthias M, Dörken B, Herrmann F, Gürtler R, Hohenberger P, Haas N, Sohr R, Sander B, Lemke AJ, Ohlendorf D, Huhnt W, Huhn D. Clinical experiences with magnetic drug targeting: a phase 1 study with 4’-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res. 1996;56:4686–93.

PubMed  Google Scholar 

Prince PM, Mahmoud WE, Al-Ghamdi A, Bronstein LM. Magnetic drug delivery: where the field is going. Front Chem. 2018;6:619.

Article  Google Scholar 

Xue Y, Shao G, Zhang Y, Wang W, Qi Y, Han S, Li H. Applications of magnetic particle imaging in biomedicine : advancements and prospects. Front Phys. 2022;13:898426.

Article  Google Scholar 

Sekine K, Mitamura Y. Evaluation of the cytotoxicity of oil-based magnetic fluid based on cell proliferation study. J Chin Soc Mech Eng. 2020;41:647–52.

Google Scholar 

Mitamura Y, Sekine K, Okamoto E. Magnetic fluid seals working in liquid environments: factor limiting their life and solution methods. J Magn Magn Mater. 2020;500:1–5.

Article  Google Scholar 

Moreal G, Koenig SC, Takkin ME, Shambaugh C, LaRose JA, Slaughter MS. Feasibility testing of the RT cardiac systems percutaneous mechanical circulatory support device. ASAIO J. 2023;69:519–26.

Article  Google Scholar 

留言 (0)

沒有登入
gif