Baroreflex dynamics during the rest to exercise transient in acute normobaric hypoxia in humans

Adami A, Fagoni N, Ferretti G (2014) The Q-VO2 diagram: an analytical interpretation of oxygen transport in arterial blood during exercise in humans. Respir Physiol Neurobiol 193:55–61. https://doi.org/10.1016/j.resp.2014.01.007

Article  PubMed  Google Scholar 

Barstow TJ, Molé PA (1987) Simulation of pulmonary O2 uptake during exercise transients in humans. J Appl Physiol 63:2253–2261. https://doi.org/10.1152/jappl.1987.63.6.2253

Article  CAS  PubMed  Google Scholar 

Bertinieri G, Di Rienzo M, Cavallazzi A et al (1988) Evaluation of baroreceptor reflex by blood pressure monitoring in unanesthetized cats. Am J Physiol 254:H377–H383. https://doi.org/10.1152/ajpheart.1988.254.2.H377

Article  CAS  PubMed  Google Scholar 

Boushel R, Calbet J-AL, Rådegran G et al (2001) Parasympathetic neural activity accounts for the lowering of exercise heart rate at high altitude. Circ 104:1785–1791. https://doi.org/10.1161/hc4001.097040

Article  CAS  Google Scholar 

Bringard A, Adami A, Moia C, Ferretti G (2014) A new interpolation-free procedure for breath-by-breath analysis of oxygen uptake in exercise transients. Eur J Appl Physiol 114:1983–1994. https://doi.org/10.1007/s00421-014-2920-z

Article  CAS  PubMed  Google Scholar 

Bringard A, Adami A, Fagoni N et al (2017) Dynamics of the RR-interval versus blood pressure relationship at exercise onset in humans. Eur J Appl Physiol 117:619–630. https://doi.org/10.1007/s00421-017-3564-6

Article  PubMed  Google Scholar 

Buchheit M, Richard R, Doutreleau S et al (2004) Effect of acute hypoxia on heart rate variability at rest and during exercise. Int J Sports Med 25:264–269. https://doi.org/10.1055/s-2004-819938

Article  CAS  PubMed  Google Scholar 

Chin LMK, Heigenhauser GJF, Paterson DH, Kowalchuk JM (2010) Pulmonary O2 uptake and leg blood flow kinetics during moderate exercise are slowed by hyperventilation-induced hypocapnic alkalosis. J Appl Physiol 108:1641–1650. https://doi.org/10.1152/japplphysiol.01346.2009

Article  PubMed  PubMed Central  Google Scholar 

Chouchou F, Pichot V, Costes F et al (2020) Autonomic cardiovascular adaptations to acute head-out water immersion, head-down tilt and supine position. Eur J Appl Physiol 120:337–347. https://doi.org/10.1007/s00421-019-04278-4

Article  PubMed  Google Scholar 

Chung DC, Niranjan SC, Clark JW et al (1997) A dynamic model of ventricular interaction and pericardial influence. Am J Physiol - Heart Circ Physiol 272:H2942–H2962. https://doi.org/10.1152/ajpheart.1997.272.6.h2942

Article  CAS  Google Scholar 

Clifford PS (2007) Skeletal muscle vasodilatation at the onset of exercise. J Physiol 583:825–833. https://doi.org/10.1113/jphysiol.2007.135673

Article  CAS  PubMed  PubMed Central  Google Scholar 

DeLorey DS, Kowalchuk JM, Paterson DH (2003) Relationship between pulmonary O2 uptake kinetics and muscle deoxygenation during moderate-intensity exercise. J Appl Physiol 95:113–120. https://doi.org/10.1152/japplphysiol.00956.2002

Article  PubMed  Google Scholar 

Di Rienzo M, Castiglioni P, Iellamo F et al (2008) Dynamic adaptation of cardiac baroreflex sensitivity to prolonged exposure to microgravity: data from a 16-day spaceflight. J Appl Physiol 105:1569–1575. https://doi.org/10.1152/japplphysiol.90625.2008

Article  PubMed  Google Scholar 

Fadel PJ, Ogoh S, Watenpaugh DE et al (2001) Carotid baroreflex regulation of sympathetic nerve activity during dynamic exercise in humans. Am J Physiol - Heart Circ Physiol 280:H1383–H1390. https://doi.org/10.1152/ajpheart.2001.280.3.H1383

Article  CAS  PubMed  Google Scholar 

Fagoni N, Bruseghini P, Adami A et al (2020) Effect of lower body negative pressure on phase i cardiovascular responses at exercise onset. Int J Sports Med 41:209–218. https://doi.org/10.1055/a-1028-7496

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fagraeus L, Linnarsson D (1976) Autonomic origin of heart rate fluctuations at the onset of muscular exercise. J Appl Physiol 40:679–682. https://doi.org/10.1152/jappl.1976.40.5.679

Article  CAS  PubMed  Google Scholar 

Ferretti G, Boutellier U, Pendergast D et al (1990) IV. Oxygen transport system before and after exposure to chronic hypoxia. Int J Sports Med 11:S15–S20. https://doi.org/10.1055/s-2007-1024848

Article  PubMed  Google Scholar 

Ferretti G, Binzoni T, Hulo N et al (1995) Kinetics of oxygen consumption during maximal exercise at different muscle temperatures. Respir Physiol 102:261–268. https://doi.org/10.1016/0034-5687(95)00071-2

Article  CAS  PubMed  Google Scholar 

Ferretti G, Licker MJ, Anchisi S et al (2005) The effects of β1-adrenergic blockade on cardiovascular oxygen flow in normoxic and hypoxic humans at exercise. Eur J Appl Physiol 95:250–259. https://doi.org/10.1007/s00421-005-1393-5

Article  CAS  PubMed  Google Scholar 

Ferretti G, Fagoni N, Taboni A et al (2022) A century of exercise physiology: key concepts on coupling respiratory oxygen flow to muscle energy demand during exercise. Eur J Appl Physiol 122:1317–1365. https://doi.org/10.1007/s00421-022-04901-x

Article  PubMed  PubMed Central  Google Scholar 

Fisher JP, Roche J, Turner R et al (2022) Hypobaric hypoxia and cardiac baroreflex sensitivity in young women. Am J Physiol - Heart Circ Physiol 323:H1048–H1054. https://doi.org/10.1152/ajpheart.00452.2022

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fontolliet T, Pichot V, Bringard A et al (2018) Testing the vagal withdrawal hypothesis during light exercise under autonomic blockade: a heart rate variability study. J Appl Physiol 125:1804–1811. https://doi.org/10.1152/japplphysiol.00619.2018

Article  CAS  PubMed  Google Scholar 

Fontolliet T, Bringard A, Adami A et al (2021) Vagal blockade suppresses the phase I heart rate response but not the phase I cardiac output response at exercise onset in humans. Eur J Appl Physiol 121:3173–3187. https://doi.org/10.1007/s00421-021-04769-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Francescato MP, Cettolo V, Bellio R (2014a) Confidence intervals for the parameters estimated from simulated O2 uptake kinetics: effects of different data treatments. Exp Physiol 99:187–195. https://doi.org/10.1113/expphysiol.2013.076208

Article  CAS  PubMed  Google Scholar 

Francescato MP, Cettolo V, Bellio R (2014b) Assembling more O2 uptake responses: is it possible to merely stack the repeated transitions? Respir Physiol Neurobiol 200:46–49. https://doi.org/10.1016/j.resp.2014.06.004

Article  CAS  PubMed  Google Scholar 

Halliwill JR, Minson CT (2002) Effect of hypoxia on arterial baroreflex control of heart rate and muscle sympathetic nerve activity in humans. J Appl Physiol 93:857–864. https://doi.org/10.1152/japplphysiol.01103.2001

Article  PubMed  Google Scholar 

Halliwill JR, Morgan BJ, Charkoudian N (2003) Peripheral chemoreflex and baroreflex interactions in cardiovascular regulation in humans. J Physiol 552:295–302. https://doi.org/10.1113/jphysiol.2003.050708

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hartley LH, Vogel J, a, Landowne M, (1973) Central, femoral, and brachial circulation during exercise in hypoxia. J Appl Physiol 34:87–90. https://doi.org/10.1152/jappl.1973.34.1.87

Article  CAS  PubMed  Google Scholar 

Hibi N, Fujinaga H, Ishii K (1996) Work and power outputs determined from pedalling and flywheel friction forces during brief maximal exertion on a cycle ergometer. Eur J Appl Physiol 74:435–442. https://doi.org/10.1007/BF02337724

Article  CAS  Google Scholar 

Hirayanagi K, Iwase S, Kamiya A et al (2004) Functional changes in autonomic nervous system and baroreceptor reflex induced by 14 days of 6 degrees head-down bed rest. Eur J Appl Physiol 92:160–167. https://doi.org/10.1007/s00421-004-1067-8

Article  PubMed  Google Scholar 

Hopkins SR, Bogaard HJ, Niizeki K et al (2003) β-Adrenergic or parasympathetic inhibition, heart rate and cardiac output during normoxic and acute hypoxic exercise in humans. J Physiol 550:605–616. https://doi.org/10.1113/jphysiol.2003.040568

Article  CAS  PubMed  PubMed Central  Google Scholar 

Houssiere A, Najem B, Ciarka A et al (2005) Chemoreflex and metaboreflex control during static hypoxic exercise. Am J Physiol - Heart Circ Physiol 288:H1724–H1729. https://doi.org/10.1152/ajpheart.01043.2004

Article  CAS  PubMed  Google Scholar 

Iellamo F, Legramante JM, Raimondi G, Peruzzi G (1997) Baroreflex control of sinus node during dynamic exercise in humans: effects of central command and muscle reflexes. Am J Physiol - Heart Circ Physiol 272:H1157–H1164. https://doi.org/10.1152/ajpheart.1997.272.3.H1157

Article  CAS  Google Scholar 

Jouett NP, Watenpaugh DE, Dunlap ME, Smith ML (2015) Interactive effects of hypoxia, hypercapnia and lung volume on sympathetic nerve activity in humans. Exp Physiol 100:1018–1029. https://doi.org/10.1113/EP085092

Article  CAS 

留言 (0)

沒有登入
gif